17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre 3. Estimating the asymptotic variance of LSE of weak V<strong>ARMA</strong> models 106<br />

where θ ∗ n is b<strong>et</strong>ween ˆ θn and θ0. Using the strong consistency of ˆ θn and (3.18), it is easily<br />

seen that<br />

vec ˆ Mn = vecMn( ˆ θn) → vecM(θ0) = vecM, a.s.<br />

The proof is compl<strong>et</strong>e. ✷<br />

Lemma 3.7. Under Assumptions A1–A8, we have<br />

ˆΣe0 → Σe0 a.s, as n → ∞.<br />

Proof of Lemma 3.7 : We have ˆ Σe0 = Σn( ˆ θn) with Σn(θ) = n −1 n<br />

t=1 <strong>et</strong>(θ)e ′ t(θ). By<br />

the ergodic theorem<br />

Σn(θ) → Σe(θ) := E<strong>et</strong>(θ)e ′ t(θ), a.s.<br />

Using the elementary relation vec(aa ′ ) = a ⊗ a, where a is a vector, we have<br />

vec ˆ Σe0 = n−1n t=1<strong>et</strong>( ˆ θn) ⊗ <strong>et</strong>( ˆ θn) and vecΣn(θ0) = n−1n t=1<strong>et</strong>(θ0) ⊗ <strong>et</strong>(θ0). Using<br />

a Taylor expansion of vec ˆ Σe0 around θ0 and (3.2), we obtain<br />

vec ˆ Σe0 = vecΣn(θ0)+ 1<br />

n<br />

Using the strong consistency of ˆ θn,<br />

it is easily seen that<br />

The proof is compl<strong>et</strong>e. ✷<br />

n<br />

<br />

<strong>et</strong> ⊗ ∂<strong>et</strong> ∂<strong>et</strong><br />

+<br />

∂θ ′ ∂θ<br />

t=1<br />

Esup <strong>et</strong>(θ)<br />

θ∈Θ<br />

2 < ∞ and<br />

′ ⊗<strong>et</strong><br />

<br />

<br />

<br />

sup ∂<strong>et</strong>(θ)<br />

θ∈Θ ∂θ ′<br />

<br />

<br />

<br />

vec ˆ Σe0 → vecΣe(θ0) = vecΣe0, a.s.<br />

Lemma 3.8. Under Assumptions A1–A8, we have<br />

ˆΣ −1<br />

e0 → Σ −1<br />

e0 a.s as n → ∞.<br />

Proof of Lemma 3.8 : For any multiplicative norm, we have<br />

<br />

<br />

ˆ Σ −1<br />

e0 −Σ−1<br />

<br />

<br />

e0 = −ˆ Σ −1<br />

<br />

ˆΣe0<br />

e0 −Σe0 Σ −1<br />

<br />

<br />

e0 ≤ ˆ Σ −1<br />

<br />

<br />

e0 <br />

<br />

( ˆ θn −θ0)+OP<br />

2<br />

< ∞,<br />

ˆ Σe0 −Σe0<br />

<br />

1<br />

.<br />

n<br />

<br />

<br />

<br />

−1<br />

Σ .<br />

In view of Lemma 3.7 and <br />

−1<br />

Σ <br />

e0 < ∞ (because the matrix Σe0 is nonsingular), we<br />

have<br />

<br />

<br />

ˆ Σ −1<br />

e0 −Σ−1 e0<br />

<br />

<br />

→ 0 a.s.<br />

e0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!