17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre 2. Estimating weak structural V<strong>ARMA</strong> models 74<br />

positive. If J is singular, then there exists a vector c = (c1,...,ck0) ′ = 0 such that<br />

c ′ J1c = c ′ J2c = 0. Since Σ −1/2<br />

e0 ⊗Σ −1/2<br />

e0 and Σ −1<br />

e0 are definite positive, we have c ′ J1c = 0<br />

if and only if<br />

k0 k0 <br />

ckdk = ckvec ∂Σe(ϑ0)<br />

= 0 (2.22)<br />

∂ϑk<br />

k=1<br />

k=1<br />

and c ′ J2c = 0 if and only if k0 ∂<strong>et</strong>(ϑ0)<br />

k=1ck = 0 a.s. Differentiating the two si<strong>des</strong> of the<br />

∂ϑk<br />

reduced form representation (2.3), the latter equation yields the V<strong>ARMA</strong>(p−1,q−1)<br />

equation p i=1A∗i Xt−i = p j=1B∗ j<strong>et</strong>−j. The identifiability assumption A5 exclu<strong>des</strong> the<br />

existence of such a representation. Thus<br />

A ∗ k0 <br />

i = ck<br />

k=1<br />

0 Ai<br />

(ϑ0) = 0, B ∗ k0 ∂A<br />

j = ck<br />

−1 −1<br />

0 BjB0 A0<br />

∂A −1<br />

∂ϑk<br />

k=1<br />

∂ϑk<br />

(ϑ0) = 0. (2.23)<br />

It can be seen that (2.22) and (2.23), for i = 1,...,p and j = 1,...,q, are equivalent<br />

to <br />

Mϑ0 c = 0. We conclude from A8. ✷<br />

Lemma 5. Under the assumptions of Theorem 2.2,<br />

√ n ∂ℓn(ϑ0)<br />

∂ϑ<br />

L<br />

→ N(0,I).<br />

Proof of Lemma 5 : In view of (2.12), we have<br />

∂<strong>et</strong>(ϑ0)<br />

∂ϑi<br />

=<br />

∞<br />

ℓ=1<br />

d ′ ℓ <strong>et</strong>−ℓ, (2.24)<br />

where the sequence of matrices dℓ = dℓ(i) is such that dℓ → 0 at a geom<strong>et</strong>ric rate as<br />

ℓ → ∞. By (2.19), we have for all m<br />

<br />

∂lt(ϑ0)<br />

= Tr Σ<br />

∂ϑi<br />

−1<br />

<br />

e0 Id −<strong>et</strong>e ′ tΣ−1 <br />

∂Σe(ϑ0)<br />

e0 +2<br />

∂ϑi<br />

∂e′ t(ϑ0)<br />

Σ<br />

∂ϑi<br />

−1<br />

e0 <strong>et</strong><br />

where<br />

= Yt,m,i +Zt,m,i<br />

<br />

Yt,m,i = Tr Σ −1<br />

e0<br />

Zt,m,i = 2<br />

∞<br />

ℓ=m+1<br />

Id −<strong>et</strong>e ′ t Σ−1<br />

e0<br />

e ′ t−ℓ d′ ℓ Σ−1<br />

e0 <strong>et</strong>.<br />

<br />

∂Σe(ϑ0)<br />

+2<br />

∂ϑi<br />

m<br />

ℓ=1<br />

e ′ t−ℓ d′ ℓ Σ−1<br />

e0 <strong>et</strong><br />

L<strong>et</strong> Yt,m = (Yt,m,1,...,Yt,m,k0) ′ and Zt,m = (Zt,m,1,...,Yt,m,k0) ′ . The processes (Yt,m)t<br />

and (Zt,m)t are stationary and centered. Moreover, under Assumption A7 and m

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!