17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre 2. Estimating weak structural V<strong>ARMA</strong> models 72<br />

The last expectation is null because the linear innovation <strong>et</strong> = <strong>et</strong>(ϑ0) is orthogonal to<br />

the linear past (i.e. to the Hilbert space Ht−1 generated by linear combinations of the<br />

Xu for u < t), and because {<strong>et</strong>(ϑ)−<strong>et</strong>(ϑ0)} belongs to this linear past Ht−1. Moreover<br />

Thus<br />

Q(ϑ0) = logd<strong>et</strong>Σe0 +Ee ′ 1(ϑ0)Σ −1<br />

e0 e1(ϑ0)<br />

= logd<strong>et</strong>Σe0 +TrΣ −1<br />

e0 Ee1(ϑ0)e ′ 1(ϑ0) = logd<strong>et</strong>Σe0 +d.<br />

Q(ϑ)−Q(ϑ0) ≥ TrΣ −1<br />

e Σe0 −logd<strong>et</strong>Σ −1<br />

e Σe0 −d ≥ 0 (2.13)<br />

using the elementary inequality Tr(A −1 B) − logd<strong>et</strong>(A −1 B) ≥ Tr(A −1 A) −<br />

logd<strong>et</strong>(A −1 A) = d for all symm<strong>et</strong>ric positive semi-definite matrices of order<br />

d × d. At least one of the two inequalities in (2.13) is strict, unless if e1(ϑ) = e1(ϑ0)<br />

with probability 1 and Σe = Σe0, which is equivalent to ϑ = ϑ0 by Lemma 1. The<br />

rest of the proof relies on standard compactness arguments, as in Theorem 1 of FZ. ✷<br />

Proof of Theorem 2.2 : In view of Theorem 2.1 and A6, we have almost surely<br />

ˆϑn → ϑ0 ∈ ◦<br />

Θ. Thus ∂ ˜ ℓn( ˆ ϑn)/∂ϑ = 0 for sufficiently large n, and a Taylor expansion<br />

gives<br />

0 oP(1)<br />

= √ n ∂ℓn(ϑ0)<br />

∂ϑ + ∂2ℓn(ϑ0) ∂ϑ∂ϑ ′<br />

√ <br />

n ˆϑn −ϑ0 , (2.14)<br />

using arguments given in FZ (proof of Theorem 2). The proof then directly follows from<br />

Lemma 3 and Lemma 5 below. ✷<br />

We first state elementary derivative rules, which can be found in Appendix A.13 of<br />

Lütkepohl (1993).<br />

Lemma 2. If f(A) is a scalar function of a matrix A whose elements aij are function<br />

of a variable x, then<br />

∂f(A) <br />

<br />

∂f(A) ∂aij ∂f(A)<br />

= = Tr<br />

∂x ∂x ∂A ′<br />

<br />

∂A<br />

. (2.15)<br />

∂x<br />

When A is invertible, we also have<br />

i,j<br />

∂aij<br />

∂log|d<strong>et</strong>(A)|<br />

∂A ′<br />

= A −1<br />

(2.16)<br />

∂Tr(CA−1B) ∂A ′<br />

= −A −1 BCA −1<br />

(2.17)<br />

∂Tr(CAB)<br />

∂A ′ = BC (2.18)<br />

Lemma 3. Under the assumptions of Theorem 2.2, almost surely<br />

where J is invertible.<br />

∂2ℓn(ϑ0) → J,<br />

∂ϑ∂ϑ ′

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!