17.08.2013 Views

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

THÈSE Estimation, validation et identification des modèles ARMA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre 3. Estimating the asymptotic variance of LSE of weak V<strong>ARMA</strong> models 100<br />

where Eij = ∂Bℓ ′/∂bij,ℓ ′ is the d×d matrix with 1 at position (i,j) and 0 elsewhere.<br />

We then have<br />

∞ ∂<strong>et</strong>(θ)<br />

= B ∗ ij,h<strong>et</strong>−ℓ ′ −h(θ). (3.10)<br />

∂bij,ℓ ′<br />

Similarly to Lemma 3.4, we have<br />

∂<strong>et</strong>(θ)<br />

∂b ′ ℓ ′<br />

h=0<br />

= [N11(L)<strong>et</strong>−ℓ ′(θ) : N21(L)<strong>et</strong>−ℓ ′(θ) : ... : Ndd(L)<strong>et</strong>−ℓ ′(θ)]<br />

<br />

d×d2 = N(L)(Id 2 ⊗<strong>et</strong>−ℓ ′(θ)) = N(L)<strong>et</strong>−ℓ ′(θ) = Ut−ℓ ′(θ),<br />

where N(L) = [N11(L) : N21(L) : ... : Ndd(L)] and Ut−ℓ ′ are respectively the d×d3 and<br />

d×d 2 matrices. Then, we have<br />

∂<strong>et</strong>(θ)<br />

∂b ′ ℓ ′<br />

=<br />

∞<br />

B ∗ h<strong>et</strong>−ℓ ′ −h(θ) =<br />

h=0<br />

∞<br />

B ∗ k−ℓ ′<strong>et</strong>−k(θ) = Ut−ℓ ′(θ),<br />

where B ∗ k−ℓ ′ = 0 when k < ℓ′ . With these notations, we obtain<br />

∂<strong>et</strong>(θ)<br />

∂b ′<br />

=<br />

=<br />

k=0<br />

∞ <br />

∗<br />

Bk−1<strong>et</strong>−k(θ) : B ∗ k−2<strong>et</strong>−k(θ) : ... : B ∗ <br />

k−q<strong>et</strong>−k(θ) <br />

d×d2q ∞<br />

B ∗ θ,k (Id2q ⊗<strong>et</strong>−k(θ)),<br />

k=0<br />

k=0<br />

whereB ∗ θ,k = B ∗ k−1 : B∗ k−2 : ... : B∗ k−q<br />

L<strong>et</strong><br />

is thed×d 3 q matrix. The conclusion follows. ✷<br />

Proof of Proposition 2 : L<strong>et</strong><br />

∂<br />

∂θ ′<strong>et</strong>(θ0) <br />

∂<br />

= <strong>et</strong>(θ0),...,<br />

∂θ1<br />

∂<br />

<br />

<strong>et</strong>(θ0)<br />

∂θk0<br />

˜ℓn(θ) = − 2<br />

n log˜ Ln(θ)<br />

= 1<br />

n <br />

dlog(2π)+logd<strong>et</strong>Σe + ˜e<br />

n<br />

′ t(θ)Σ −1<br />

e ˜<strong>et</strong>(θ) .<br />

t=1<br />

In Boubacar Mainassara and Francq (2009), it is shown that ℓn(θ) = ˜ ℓn(θ)+o(1) a.s.,<br />

where<br />

ℓn(θ) = 1<br />

n <br />

dlog(2π)+logd<strong>et</strong>Σe +e<br />

n<br />

′ t (θ)Σ−1 e <strong>et</strong>(θ) .<br />

t=1<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!