01.08.2021 Views

Energy and Human Ambitions on a Finite Planet, 2021a

Energy and Human Ambitions on a Finite Planet, 2021a

Energy and Human Ambitions on a Finite Planet, 2021a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10 Renewable Overview 167<br />

deposit of heat left over from the collapse/formati<strong>on</strong> of the earth, 9<br />

the other half coming from radioactive decays of elements ultimately<br />

tracing to ancient astrophysical cataclysms. 10 For both the formati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> radioactive c<strong>on</strong>tributi<strong>on</strong>s, the supply is not replenished after its<br />

use, although the timescale for the radioactive decays to fade away is<br />

billi<strong>on</strong>s of years.<br />

Nuclear fusi<strong>on</strong> needs deuterium <str<strong>on</strong>g>and</str<strong>on</strong>g> tritium. 11 Roughly <strong>on</strong>e out of<br />

every 10,000 hydrogen atoms is deuterium, so ocean water (H 2 O) will<br />

have enough deuterium to last billi<strong>on</strong>s of years. Tritium, however, is<br />

not found naturally <str<strong>on</strong>g>and</str<strong>on</strong>g> must be synthesized from lithium, in finite<br />

supply. Details will follow in Chapter 15.<br />

9: ...ac<strong>on</strong>versi<strong>on</strong> of gravitati<strong>on</strong>al potential<br />

energy<br />

10: . . . primarily supernova explosi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

neutr<strong>on</strong> star mergers<br />

11: Eventually it is hoped that <strong>on</strong>ly deuterium<br />

could be used.<br />

10.3 Renewable <str<strong>on</strong>g>Energy</str<strong>on</strong>g> Budget<br />

Notice that all of the unqualified 12 “Yes” entries in Table 10.1 originate 12: . . . i.e., no asterisk<br />

from the sun. For that matter, fossil fuels represent captured ancient<br />

solar energy, stored for all these years. The sun sends energy toward the<br />

earth at a rate of 1,360 W/m 2 . Multiplying this by the projected area 13 of 13: See Example 10.3.1.<br />

the earth (πR 2 ⊕ ≈ 1.28 × 1014 m 3 ) results in 174,000 TW of solar power<br />

intercepting the earth. This number absolutely dwarfs the 18 TW societal<br />

energy budget of all humans <strong>on</strong> Earth. Figure 10.1 shows graphically<br />

what happens to this energy input.<br />

174,000 TW (100%)<br />

solar input<br />

atmospheric<br />

reflecti<strong>on</strong><br />

22.6%<br />

29.3%<br />

reflected<br />

39,500 TW (22.6%)<br />

atmospheric<br />

absorpti<strong>on</strong><br />

900 TW (0.5%) wind<br />

44 TW geothermal<br />

100 TW (0.06%)<br />

photosynthesis<br />

83,000 TW (48%)<br />

absorbed at<br />

surface<br />

6.7% reflecti<strong>on</strong><br />

from surface<br />

5 TW (0.003%) ocean currents<br />

44,200 TW<br />

(25.4%)<br />

evaporati<strong>on</strong><br />

3 TW<br />

tidal<br />

Figure 10.1: <str<strong>on</strong>g>Energy</str<strong>on</strong>g> inputs to the earth, ignoring<br />

the radiati<strong>on</strong> piece (since that is an<br />

output channel). About 70% of Incoming<br />

solar energy is absorbed by the atmosphere<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g>, while about 30% is immediately<br />

reflected back to space (mostly by clouds).<br />

About half of the energy absorbed at the<br />

surface goes into evaporating water, while<br />

smaller porti<strong>on</strong>s drive winds, photosynthesis<br />

(l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> sea), <str<strong>on</strong>g>and</str<strong>on</strong>g> ocean currents.<br />

Additi<strong>on</strong>al n<strong>on</strong>-solar inputs are geothermal<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tidal in origin [63–65].<br />

Example 10.3.1 Solar Input: Because we will encounter solar power<br />

flux many times in this textbook, this is a good opportunity to spell<br />

out some key numbers <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>cepts.<br />

First, sunlight arriving at the top of Earth’s atmosphere delivers energy<br />

at a rate of 1,360 Joules per sec<strong>on</strong>d per square meter (1,360 W/m 2 ),<br />

which is known as the solar c<strong>on</strong>stant [4].<br />

[4]: Kopp et al. (2011), “A new, lower value<br />

of total solar irradiance: Evidence <str<strong>on</strong>g>and</str<strong>on</strong>g> climate<br />

significance”<br />

© 2021 T. W. Murphy, Jr.; Creative Comm<strong>on</strong>s Attributi<strong>on</strong>-N<strong>on</strong>Commercial 4.0 Internati<strong>on</strong>al Lic.;<br />

Freely available at: https://escholarship.org/uc/energy_ambiti<strong>on</strong>s.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!