01.08.2021 Views

Energy and Human Ambitions on a Finite Planet, 2021a

Energy and Human Ambitions on a Finite Planet, 2021a

Energy and Human Ambitions on a Finite Planet, 2021a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

15 Nuclear <str<strong>on</strong>g>Energy</str<strong>on</strong>g> 244<br />

2. Beta-minus (β − ) decay is a manifestati<strong>on</strong> of the weak nuclear<br />

force, in which a neutr<strong>on</strong> within the nucleus c<strong>on</strong>verts to a prot<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> in the process spits out an electr<strong>on</strong> (β − particle, really just e − )<br />

to c<strong>on</strong>serve total electric charge, <str<strong>on</strong>g>and</str<strong>on</strong>g> a neutrino—which we will<br />

ignore. 11 The mass number, A is unchanged, but N goes down <strong>on</strong>e<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Z goes up <strong>on</strong>e (gaining a prot<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> losing a neutr<strong>on</strong>). Thus<br />

<strong>on</strong> the chart of nuclides the moti<strong>on</strong> is <strong>on</strong>e left, <strong>on</strong>e up. It’s like a<br />

chess move (Figure 15.7);<br />

3. Beta-plus (β + ) decay, like β − , is a manifestati<strong>on</strong> of the weak nuclear<br />

force, in which a prot<strong>on</strong> within the nucleus c<strong>on</strong>verts to a neutr<strong>on</strong>,<br />

emitting a positr<strong>on</strong> (β + ,ore + , or anti-electr<strong>on</strong>; a form of antimatter)<br />

again maintaining charge c<strong>on</strong>servati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> an ignored neutrino.<br />

Similar to β − decay, A is unchanged, but Z is reduced by <strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

N gains <strong>on</strong>e. On the chart, the move is diag<strong>on</strong>al: down <strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

right <strong>on</strong>e (Figure 15.7).<br />

4. Gamma decay (γ) happens when a nucleus is in an excited energy<br />

state, having been rattled by some other decay or bombardment,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> it emits a high-energy phot<strong>on</strong>, called a gamma ray, as it settles<br />

into a lower energy state (Figure 15.6). For γ decays, Z, N, <str<strong>on</strong>g>and</str<strong>on</strong>g> A<br />

do not change, so the nucleus does not morph into another flavor,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thus does not move <strong>on</strong> the Chart of the Nuclides.<br />

11: Perhaps it is fair to ignore neutrinos<br />

since they ignore us. Neutrinos interact<br />

so infrequently with matter that a neutrino<br />

could fly through light years of rocky<br />

(Earth-like) material before being expected<br />

to hit something (interact). This extreme<br />

n<strong>on</strong>-interactivity earns it the title of “ghost”<br />

particle.<br />

Figure 15.6: Gamma decay of an excited<br />

nucleus.<br />

<br />

Figure 15.7 dem<strong>on</strong>strates the moti<strong>on</strong> of each of these decays <strong>on</strong> the Chart<br />

of the Nuclides, <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 15.2 summarizes the nucle<strong>on</strong> arithmetic.<br />

6<br />

5<br />

4<br />

C8 C9 C10 C11 C12 C13 C14 C15<br />

2.0e-21 s 0.127 s 19.29 s 20.36 m<br />

5715 yr 2.450 s<br />

4p+ –<br />

<br />

<br />

<br />

5.0e-21 s 53.3 days ~7e-17 s<br />

1.5 Myr 13.8 s 0.0215 s v. short<br />

2p+ e - capt. to Li7 2 – n?<br />

B7 B8 B9 B10 B11 B12 B13 B14<br />

3e-22 s 0.770 s 8e-19 s<br />

0.02020 s 0.0174 s 0.013 s<br />

3p+ p+2<br />

<br />

Be6 Be7 Be8 Be9 Be10 Be11 Be12 Be13<br />

3<br />

Li4<br />

8e-23 s<br />

p<br />

Li5<br />

~3e-22 s<br />

p+<br />

Li6<br />

Li7<br />

Li8 Li9 Li10 Li11<br />

0.840 s 0.1783 s 2e-21 s 0.0086 s<br />

n <br />

9<br />

1<br />

0<br />

Z<br />

H1<br />

–<br />

2<br />

<br />

He3<br />

H2<br />

n1<br />

10.25 m<br />

<br />

0 1 N<br />

<br />

He4<br />

He5 He6 He7<br />

7e-22 s 0.807 s 3e-21 s<br />

n+<br />

n<br />

H3 H4 H5 H6<br />

12.32 yr 8e-23 s v. short 3e-22 s<br />

<br />

n n 3n or 4n<br />

2 3 4 5<br />

He8 He9 He10<br />

0.119 s v. short 2e-21 s<br />

n<br />

2n<br />

6 7 8<br />

+ + Figure 15.7: Radioactive decays shown as<br />

moves <strong>on</strong> the “chess board” of the Chart of<br />

the Nuclides. The different decay types are<br />

color-coded to match Figure 15.8, <str<strong>on</strong>g>and</str<strong>on</strong>g> are<br />

<strong>on</strong>ly shown in a few representative squares.<br />

Decays frequently occur in a series, <strong>on</strong>e<br />

after the other (a decay chain), as hinted<br />

by the double-sequence starting at 12Be<br />

12 <str<strong>on</strong>g>and</str<strong>on</strong>g> ending <strong>on</strong> C. Note that the square<br />

of every unstable nuclide indicates a decay<br />

type, even if arrows are not present.<br />

Decay Z → N → A →<br />

α Z − 2 N − 2 A − 4<br />

β − Z + 1 N − 1 unchanged<br />

β + Z − 1 N + 1 unchanged<br />

γ unchanged unchanged unchanged<br />

Table 15.2: Summary of decay math <strong>on</strong> nucle<strong>on</strong><br />

counts.<br />

© 2021 T. W. Murphy, Jr.; Creative Comm<strong>on</strong>s Attributi<strong>on</strong>-N<strong>on</strong>Commercial 4.0 Internati<strong>on</strong>al Lic.;<br />

Freely available at: https://escholarship.org/uc/energy_ambiti<strong>on</strong>s.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!