01.08.2021 Views

Energy and Human Ambitions on a Finite Planet, 2021a

Energy and Human Ambitions on a Finite Planet, 2021a

Energy and Human Ambitions on a Finite Planet, 2021a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

13 Solar <str<strong>on</strong>g>Energy</str<strong>on</strong>g> 199<br />

2. Individual phot<strong>on</strong>s interact with matter at the microscopic scale<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> are relevant to underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing solar photovoltaics <str<strong>on</strong>g>and</str<strong>on</strong>g> photosynthesis;<br />

3. It’s how nature really works.<br />

13.2 The Planck Spectrum<br />

We should first underst<str<strong>on</strong>g>and</str<strong>on</strong>g> where phot<strong>on</strong>s originate, which will help us<br />

underst<str<strong>on</strong>g>and</str<strong>on</strong>g> how solar panels work <str<strong>on</strong>g>and</str<strong>on</strong>g> their limitati<strong>on</strong>s. Until recent<br />

technological advances, phot<strong>on</strong>s tended to come from thermal sources.<br />

It’s true for the white-hot sun, 6 <str<strong>on</strong>g>and</str<strong>on</strong>g> true for flame <str<strong>on</strong>g>and</str<strong>on</strong>g> inc<str<strong>on</strong>g>and</str<strong>on</strong>g>escent light<br />

bulb filaments. 7 Likewise, hot coals, electrical heating elements, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

lava are all seen to glow. Physics tells us how such hot sources radiate,<br />

as covered by the next three equati<strong>on</strong>s. The first (with units) is:<br />

P AσT 4 (W). (13.3)<br />

We already saw this equati<strong>on</strong> in the c<strong>on</strong>text of Earth’s energy balance in<br />

Secti<strong>on</strong>s 1.3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9.2. It is called the Stefan–Boltzmann law, describing<br />

the total power (in W, or J/s) emitted from a surface whose area is<br />

A (in square meters) <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature, T in Kelvin. 8 The c<strong>on</strong>stant,<br />

σ ≈ 5.67 × 10 −8 W/m 2 /K 4 is called the Stefan–Boltzmann c<strong>on</strong>stant, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

is easy to remember as 5-6-7-8. 9<br />

B λ 2πhc2<br />

λ 5 1<br />

e hc/λk BT − 1<br />

( ) W/m<br />

2<br />

, (13.4)<br />

m<br />

Eq. 13.4 might look formidable, but <strong>on</strong>ly λ <str<strong>on</strong>g>and</str<strong>on</strong>g> T are variable. It describes<br />

the Planck spectrum, otherwise known as the blackbody 10 spectrum. For<br />

some temperature, T, this functi<strong>on</strong> specifies how much power is emitted<br />

at each wavelength, λ. Three fundamental physical c<strong>on</strong>stants from key<br />

areas of physics make an appearance: c ≈ 3 × 10 8 m/s is the familiar<br />

speed of light from relativity; h ≈ 6.626 × 10 −34 J · s is Planck’s c<strong>on</strong>stant<br />

from quantum mechanics, <str<strong>on</strong>g>and</str<strong>on</strong>g> k B ≈ 1.38 × 10 −33 J · K is the Boltzmann<br />

c<strong>on</strong>stant of thermodynamics. 11<br />

λ max ≈<br />

2.898 × 10−3<br />

T(in K)<br />

(m). (13.5)<br />

6: . . . <str<strong>on</strong>g>and</str<strong>on</strong>g> thus stars <str<strong>on</strong>g>and</str<strong>on</strong>g> even the mo<strong>on</strong>,<br />

which is just reflected sunlight<br />

7: Modern lighting like fluorescent <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

LED sources rely <strong>on</strong> manipulating energy<br />

levels of electr<strong>on</strong>s within atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> crystals.<br />

8: Recall that temperature in Kelvin is the<br />

temperature in Celsius plus 273 (273.15,<br />

technically).<br />

9: The Stefan–Boltzmann c<strong>on</strong>stant is actually<br />

a witch’s brew of more fundamental<br />

c<strong>on</strong>stants h (Planck’s c<strong>on</strong>stant), c (speed of<br />

light), <str<strong>on</strong>g>and</str<strong>on</strong>g> k B (the Boltzmann c<strong>on</strong>stant)as<br />

σ 2π 5 k 4 B /(15c2 h 3 ).<br />

10: The term blackbody effectively means<br />

a perfect emitter <str<strong>on</strong>g>and</str<strong>on</strong>g> absorber of thermal<br />

radiati<strong>on</strong>.<br />

11: This last <strong>on</strong>e may be more familiar to<br />

students in its chemistry form of the gas<br />

c<strong>on</strong>stant R k B N A ≈ 8.31 J/K/mol, where<br />

N A ≈ 6.022 × 10 23 is Avogadro’s number.<br />

Eq. 13.5 is called the Wien law <str<strong>on</strong>g>and</str<strong>on</strong>g> is a numerical soluti<strong>on</strong> identifying<br />

the peak of the blackbody spectrum as a functi<strong>on</strong> of temperature. Higher<br />

temperatures mean higher kinetic energies at a microscopic scale, so<br />

that higher-energy (shorter-wavelength) phot<strong>on</strong>s can be produced. This<br />

is why as objects get hotter, they move from red to white, <str<strong>on</strong>g>and</str<strong>on</strong>g> eventually<br />

to a blue tint.<br />

All this may seem overwhelming, but take a breath, then just look at<br />

Figure 13.1. Everything so far in this secti<strong>on</strong> is captured by Figure 13.1.<br />

© 2021 T. W. Murphy, Jr.; Creative Comm<strong>on</strong>s Attributi<strong>on</strong>-N<strong>on</strong>Commercial 4.0 Internati<strong>on</strong>al Lic.;<br />

Freely available at: https://escholarship.org/uc/energy_ambiti<strong>on</strong>s.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!