09.12.2012 Views

Principles of Plant Genetics and Breeding

Principles of Plant Genetics and Breeding

Principles of Plant Genetics and Breeding

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Egg<br />

1 /2A<br />

1 /2a<br />

1 /4AA<br />

1 /4Aa<br />

Pollen<br />

1 /4Aa<br />

1 /4aa<br />

Phenotypic ratio <strong>of</strong> 3 : 1 A– : aa<br />

(a)<br />

Egg<br />

1 /4AB<br />

1 /4Ab<br />

1 /4Ab<br />

1 /4ab<br />

1 /2A<br />

1 /4AB<br />

1/16 AABB<br />

1/16 AABb<br />

1/16 aABB<br />

1/16 AaBb<br />

1 /2a<br />

1 /4Ab<br />

1/16 AABb<br />

1/16 AAbb<br />

1/16 AaBb<br />

1/16 Aabb<br />

3 /4A–<br />

1 /4aa<br />

(a)<br />

3 /4A<br />

1 /4a<br />

(c)<br />

Pollen<br />

PLANT CELLULAR ORGANIZATION AND GENETIC STRUCTURE 41<br />

1 /4Ab<br />

1/16 AaBB<br />

1/16 AaBB<br />

1/16 aaBB<br />

1/16 aaBb<br />

3 /4B<br />

3 /4B–<br />

1 /4bb<br />

3 /4B–<br />

1 /4bb<br />

1 /4b<br />

3 /4B<br />

1 /4b<br />

1 /4ab<br />

1/16 AaBb<br />

1/16 Aabb<br />

1/16 aaBb<br />

1/16 aabb<br />

Phenotypic ratio <strong>of</strong> 9 : 3 : 3 : 1 A–B– : A–ab : aaB– : aabb<br />

(b)<br />

Figure 3.5 The Punnett square procedure may be used to<br />

demonstrate the events that occur during hybridization<br />

<strong>and</strong> selfing in (a) a monohybrid cross, <strong>and</strong> (b) a dihybrid<br />

cross, showing the proportions <strong>of</strong> genotypes in the F 2<br />

population <strong>and</strong> the corresponding Mendelian phenotypic<br />

<strong>and</strong> genotypic ratios.<br />

9/16 A–B–<br />

3/16 A–bb<br />

3/16 aaB–<br />

1/16 aabb<br />

3 /4C<br />

1 /4c<br />

3 /4C<br />

1 /4c<br />

3 /4C<br />

1 /4c<br />

3 /4C<br />

1 /4c<br />

flowers because <strong>of</strong> dominance <strong>of</strong> purple over white<br />

flowers. If the F 1 plant has white flowers, it is pro<strong>of</strong> that<br />

the cross was unsuccessful (i.e., the product <strong>of</strong> the<br />

“cross” is actually from selfing).<br />

Distinguishing between heterozygous <strong>and</strong><br />

homozygous individuals<br />

In a segregating population where genotypes PP <strong>and</strong> Pp<br />

produce the same phenotype (because <strong>of</strong> dominance), it<br />

is necessary, sometimes, to know the exact genotype <strong>of</strong><br />

a plant. There are two procedures that are commonly<br />

used to accomplish this task.<br />

Testcross<br />

Developed by Mendel, a testcross entails crossing the<br />

plant with the dominant allele but unknown genotype<br />

with a homozygous recessive individual (Figure 3.7).<br />

If the unknown genotype is PP, crossing it with the<br />

genotype pp will produce all Pp <strong>of</strong>fspring. However, if<br />

the unknown is Pp then a testcross will produce <strong>of</strong>fspring<br />

segregating 50 : 50 for Pp : pp. The testcross also<br />

27/64 ABC<br />

9/64 ABc<br />

9/64 AbC<br />

3/64 Abc<br />

Figure 3.6 The branch diagram method may also be used to predict the phenotypic <strong>and</strong> genotypic ratios in the F 2<br />

population. (a) Two genes with dominance at both loci. (b) Two genes with dominance at one locus. (c) F 2 trihybrid<br />

phenotypic ratio.<br />

3 /4A–<br />

1 /4aa<br />

(b)<br />

9/64 aBC<br />

3/64 aBc<br />

3/64 abC<br />

1/64 abc<br />

1 /4BB<br />

1 /2Bb<br />

1 /4bb<br />

1 /4BB<br />

1 /2Bb<br />

1 /4bb<br />

3/16 A–BB<br />

6/16 A–Bb<br />

3/16 A–bb<br />

1/16 aaBB<br />

2/16 aaBb<br />

1/16 aabb

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!