09.12.2012 Views

Principles of Plant Genetics and Breeding

Principles of Plant Genetics and Breeding

Principles of Plant Genetics and Breeding

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(a) (b)<br />

PLANT REPRODUCTIVE SYSTEMS 67<br />

Tr16L Satellite<br />

Figure 3 (a) The satellite region <strong>of</strong> Tr16L (arrow), which confers apomixis in the V31 apomictic line. No normal or<br />

intact Tr16 is present in this line. (b) An enlargement <strong>of</strong> the isochromosome-appearing entity with the nucleolusorganizing<br />

region (NOR) <strong>and</strong> satellite regions identified.<br />

Harlan, J.R., <strong>and</strong> J.M.J. de Wet. 1977. Pathways <strong>of</strong> genetic transfer from Tripsacum to Zea mays. Proc. Natl. Acad. Sci. USA<br />

74:3494–3497.<br />

Kindiger, B. 1993. Aberrant microspore development in hybrids <strong>of</strong> maize × Tripsacum dactyloides. Genome 36:987–997.<br />

Kindiger, B., D. Bai, <strong>and</strong> V. Sokolov. 1996a. Assignment <strong>of</strong> gene(s) conferring apomixis in Tripsacum to a chromosome arm:<br />

Cytological <strong>and</strong> molecular evidence. Genome 39:1133–1141.<br />

Kindiger, B., C.A. Blakey, <strong>and</strong> Dewald, C.L. 1995. Sex reversal in maize × Tripsacum hybrids: Allelic non-complementation <strong>of</strong> ts2<br />

<strong>and</strong> gsf1. Maydica 40:187–190.<br />

Kindiger, B., <strong>and</strong> V. Sokolov. 1997. Progress in the development <strong>of</strong> apomictic maize. Trends Agron. 1:75–94.<br />

Kindiger, B., V. Sokolov, <strong>and</strong> C.L. Dewald. 1996b. A comparison <strong>of</strong> apomictic reproduction in eastern gamagrass (Tripsacum<br />

dactyloides (L.) <strong>and</strong> maize–Tripsacum hybrids. Genetica 97:103–110.<br />

Leblanc, O., D. Griminelli, D. Gonzalez-de-Leon, <strong>and</strong> Y. Savidan. 1995. Detection <strong>of</strong> the apomictic mode <strong>of</strong> reproduction in<br />

maize–Tripsacum hybrids using maize RFLP markers. Theor. Appl. <strong>Genetics</strong> 90:1198–1203.<br />

Leblanc, O., D. Griminelli, N. Islan-Faridi, J. Berthaud, <strong>and</strong> Y. Savidan. 1996. Reproductive behavior in maize–Tripsacum polyhaploid<br />

plants: Implications for the transfer <strong>of</strong> apomixis into maize. J. Hered. 87:108–111.<br />

Li, D., C.A. Blakey, C.L. Dewald, <strong>and</strong> S.L. Dellaporta. 1997. Evidence for a common sex determination mechanism for pistil abortion<br />

in maize <strong>and</strong> its wild relative Tripsacum. Proc. Natl. Acad. Sci. USA 94:4217–4222.<br />

Maguire, M. 1962. Common loci in corn <strong>and</strong> Tripsacum. J. Hered. 53:87–88.<br />

Mangelsdorf, P.C., <strong>and</strong> R.G. Reeves. 1939. The origin <strong>of</strong> Indian corn <strong>and</strong> its relatives. Texas Agric. Exp. Stn. Bull. No. 574.<br />

Petrov, D.F., N.I. Belousova, <strong>and</strong> E.S. Fokina. 1979. Inheritance <strong>of</strong> apomixis <strong>and</strong> its elements in maize × Tripsacum dactyloides<br />

hybrids. Genetika 15:1827–1836.<br />

Petrov, D.F., N.I. Belousova, E.S. Fokina, L.I. Laikova, R.M. Yatsenko, <strong>and</strong> T.P. Sorokina. 1984. Transfer <strong>of</strong> some elements <strong>of</strong><br />

apomixis from Tripsacum to maize. In: Apomixis <strong>and</strong> its role in evolution <strong>and</strong> breeding (Petrov, D.F., ed.), pp. 9–73. Oxonian<br />

Press Ltd, New Delhi, India.<br />

Poggio, L., V. Confalonieri, C. Comas, A. Cuadrado, N. Jouve, <strong>and</strong> C.A. Naranjo. 1999. Genomic in situ hybridization (GISH) <strong>of</strong><br />

Tripsacum dactyloides <strong>and</strong> Zea mays ssp. mays with B chromosomes. Genome 42:687–691.<br />

Constraints <strong>of</strong> sexual biology<br />

in plant breeding<br />

Some constraints <strong>of</strong> sexual biology are exploited as tools<br />

for breeding plants. They were previously mentioned<br />

<strong>and</strong> will be discussed in detail, including how they are<br />

NOR<br />

exploited in plant breeding. These include dioecy,<br />

monoecy, self-incompatibility, <strong>and</strong> male sterility.<br />

As previously indicated, crossing is a major procedure<br />

employed in the transfer <strong>of</strong> genes from one parent to<br />

another in the breeding <strong>of</strong> sexual species. A critical<br />

aspect <strong>of</strong> crossing is pollination control to ensure that

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!