23.02.2013 Views

Smithsonian at the Poles: Contributions to International Polar

Smithsonian at the Poles: Contributions to International Polar

Smithsonian at the Poles: Contributions to International Polar

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

in coastal environments and properties observed in <strong>the</strong><br />

main oceanic gyres. We suggest this trend is largely due <strong>to</strong><br />

slow pho<strong>to</strong>bleaching r<strong>at</strong>es and shading from Phaeocystis<br />

antarctica and o<strong>the</strong>r bloom-forming species th<strong>at</strong> contain<br />

substantial MAA.<br />

While CDOM spectral absorption coeffi cients are<br />

low in Antarctic w<strong>at</strong>ers, <strong>the</strong>y are generally higher than<br />

surface w<strong>at</strong>er aλ in low-l<strong>at</strong>itude, open-ocean w<strong>at</strong>ers, such<br />

as <strong>the</strong> Sargasso Sea, supporting <strong>the</strong> supposition of a poleward<br />

increase in aCDOM in <strong>the</strong> open ocean. Our results<br />

suggest th<strong>at</strong> CDOM in <strong>the</strong> Ross Sea is not coupled directly<br />

<strong>to</strong> algal production of organic m<strong>at</strong>ter in <strong>the</strong> photic<br />

zone. This indic<strong>at</strong>es th<strong>at</strong> case I bio-optical algorithms,<br />

in which all in-w<strong>at</strong>er constituents and <strong>the</strong> underw<strong>at</strong>er<br />

light fi eld are modeled <strong>to</strong> covary with chl a (e.g., Morel<br />

and Mari<strong>to</strong>rena, 2001), are inappropri<strong>at</strong>e. The decoupling<br />

of <strong>the</strong> phy<strong>to</strong>plank<strong>to</strong>n bloom and CDOM dynamics<br />

indic<strong>at</strong>es th<strong>at</strong> CDOM is produced from sea ice or <strong>the</strong><br />

microbial degrad<strong>at</strong>ion of algal-derived dissolved organic<br />

m<strong>at</strong>ter th<strong>at</strong> was exported out of <strong>the</strong> photic zone. Ross<br />

Sea CDOM absorption coeffi cients are similar in magnitude<br />

<strong>to</strong> values in Antarctic-infl uenced deep w<strong>at</strong>ers of<br />

<strong>the</strong> North Atlantic (Nelson et al., 2007), suggesting longrange<br />

transport of CDOM produced in <strong>the</strong> Ross Sea via<br />

Antarctic Intermedi<strong>at</strong>e and Bot<strong>to</strong>m W<strong>at</strong>er.<br />

ACKNOWLEDGMENTS<br />

This work was supported by <strong>the</strong> NSF (grant OPP-<br />

0230499, DJK; grant OPP-0230497, RPK). Any opinions,<br />

fi ndings, and conclusions or recommend<strong>at</strong>ions expressed<br />

in this paper are those of <strong>the</strong> authors and do not necessarily<br />

refl ect <strong>the</strong> views of <strong>the</strong> NSF. The authors gr<strong>at</strong>efully acknowledge<br />

<strong>the</strong> chief scientists for <strong>the</strong> Oc<strong>to</strong>ber– December<br />

2005 Ross Sea cruise, Wade Jeffery (University of West<br />

Florida) and P<strong>at</strong>rick Neale (<strong>Smithsonian</strong> Environmental<br />

Research Center). Thanks are also extended <strong>to</strong> P<strong>at</strong>rick<br />

Neale, Wade Jeffery, and <strong>the</strong>ir research groups for collection<br />

of <strong>the</strong> optics profi les, and <strong>the</strong> captain and crew<br />

of <strong>the</strong> N<strong>at</strong>hanial B. Palmer for technical assistance. We<br />

also thank Joaquim Goes (Bigelow Labor<strong>at</strong>ory for Ocean<br />

Sciences), Helga do S. Gomes (Bigelow Labor<strong>at</strong>ory for<br />

Ocean Sciences), Cristina Sobrino (<strong>Smithsonian</strong> Environmental<br />

Research Center), George Westby (St<strong>at</strong>e University<br />

of New York, College of Environmental Science and Forestry:<br />

SUNY-ESF), John Bisgrove (SUNY-ESF), Hyakubun<br />

Harada (Dauphin Island Sea Lab, University of South<br />

Alabama), Jennifer Meeks (Dauphin Island Sea Lab, University<br />

of South Alabama), Jordan Brinkley (SUNY-ESF),<br />

CHROMOPHORIC DISSOLVED ORGANIC MATTER CYCLING 331<br />

and Daniela del Valle (Dauphin Island Sea Lab, University<br />

of South Alabama) for <strong>the</strong>ir technical help with sampling<br />

during this study.<br />

LITERATURE CITED<br />

Becquevort, S., and W. O. Smith Jr. 2001. Aggreg<strong>at</strong>ion, Sediment<strong>at</strong>ion<br />

and Biodegradability of Phy<strong>to</strong>plank<strong>to</strong>n-Derived M<strong>at</strong>erial During<br />

Spring in <strong>the</strong> Ross Sea, Antarctica. Deep-Sea Research, Part II, 48:<br />

4155– 4178.<br />

Blough, N. V., and R. Del Vecchio. 2002. “Chromophoric DOM in <strong>the</strong><br />

Coastal Environment.” In Biogeochemistry of Marine Dissolved<br />

Organic M<strong>at</strong>ter, ed. D. A. Hansell and C. A. Carlson, pp. 509– 546.<br />

San Diego: Academic Press.<br />

Blough, N. V., O. C. Zafi riou, and J. Bonilla. 1993. Optical Absorption<br />

Spectra of W<strong>at</strong>ers from <strong>the</strong> Orinoco River Outfl ow: Terrestrial Input<br />

of Colored Organic M<strong>at</strong>ter <strong>to</strong> <strong>the</strong> Caribbean. Journal of Geophysical<br />

Research, 98: 2271– 2278.<br />

Bricaud, A., A. Morel, and L. Prieur. 1981. Absorption by Dissolved<br />

Organic M<strong>at</strong>ter of <strong>the</strong> Sea (Yellow Substance) in <strong>the</strong> UV and Visible<br />

Domains. Limnology and Oceanography, 26: 43– 53.<br />

Carder, K. L., R. G. Steward, G. R. Harvey, and P. B. Ortner. 1989. Marine<br />

Humic and Fulvic Acids: Their Effects on Remote Sensing of<br />

Ocean Chlorophyll. Limnology and Oceanography, 34: 68– 81.<br />

Carlson, C. A., H. W. Ducklow, D. A. Hansell, and W. O. Smith Jr. 1998.<br />

Organic Carbon Partitioning during Spring Phy<strong>to</strong>plank<strong>to</strong>n Blooms<br />

in <strong>the</strong> Ross Sea Polynya and <strong>the</strong> Sargasso Sea. Limnology and<br />

Oceanography, 43: 375– 386.<br />

Carlson, C. A., D. A. Hansell, E. T. Peltzer, and W. O. Smith Jr. 2000.<br />

S<strong>to</strong>cks and Dynamics of Dissolved and Particul<strong>at</strong>e Organic M<strong>at</strong>ter<br />

in <strong>the</strong> Sou<strong>the</strong>rn Ross Sea, Antarctica. Deep-Sea Research, Part II<br />

47: 3201– 3225.<br />

Caron, D. A., M. R. Dennett, D. J. Lonsdale, D. M. Moran, and L. Shalapyonok.<br />

2000. Microzooplank<strong>to</strong>n Herbivory in <strong>the</strong> Ross Sea, Antarctica.<br />

Deep-Sea Research, Part II, 47: 3249– 3272.<br />

Chen, R. F., P. Bissett, P. Coble, R. Conmy, G. B. Gardner, M. A. Moran,<br />

X. Wang, M. W. Wells, P. Whelan, and R. G. Zepp. 2004. Chromophoric<br />

Dissolved Organic M<strong>at</strong>ter (CDOM) Source Characteriz<strong>at</strong>ion<br />

in <strong>the</strong> Louisiana Bight. Marine Chemistry, 89: 257– 272.<br />

Del Castillo, C. E., F. Gilbes, P. G. Coble, and F. E. Muller-Karger. 2000. On<br />

<strong>the</strong> Dispersal of Riverine Colored Dissolved Organic M<strong>at</strong>ter over <strong>the</strong><br />

West Florida Shelf. Limnology and Oceanography, 45: 1425– 1432.<br />

del Valle, D. A., D. J. Kieber, D. A. Toole, J. C. Brinkley, and R. P. Kiene.<br />

In press. Biological Consumption of Dimethylsulfi de (DMS) and Its<br />

Importance in DMS Dynamics in <strong>the</strong> Ross Sea, Antarctica. Limnology<br />

and Oceanography.<br />

Del Vecchio, R., and N. V. Blough. 2002. Pho<strong>to</strong>bleaching of Chromophoric<br />

Dissolved Organic M<strong>at</strong>ter in N<strong>at</strong>ural W<strong>at</strong>ers: Kinetics and<br />

Modeling. Marine Chemistry, 78: 231– 253.<br />

———. 2004. Sp<strong>at</strong>ial and Seasonal Distribution of Chromophoric Dissolved<br />

Organic M<strong>at</strong>ter and Dissolved Organic Carbon in <strong>the</strong> Middle<br />

Atlantic Bight. Marine Chemistry, 89: 169– 187.<br />

DiTullio, G. R., J. M. Grebmeier, K. R. Arrigo, M. P. Lizotte, D. H.<br />

Robinson, A. Leventer, J. P. Barry, M. L. VanWoert, and R. B.<br />

Dunbar. 2000. Rapid and Early Export of Phaeocystis antarctica<br />

Blooms in <strong>the</strong> Ross Sea, Antarctica. N<strong>at</strong>ure, 404: 595– 598.<br />

Ducklow, H., C. Carlson, M. Church, D. Kirchman, D. Smith, and<br />

G. Steward. 2001. The Seasonal Development of <strong>the</strong> Bacterioplank<strong>to</strong>n<br />

Bloom in <strong>the</strong> Ross Sea, Antarctica, 1994– 1997. Deep-Sea Research,<br />

Part II, 48: 4199– 4221.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!