07.11.2014 Views

Application and Optimisation of the Spatial Phase Shifting ...

Application and Optimisation of the Spatial Phase Shifting ...

Application and Optimisation of the Spatial Phase Shifting ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

60 Electronic or Digital Speckle Pattern Interferometry<br />

3.2.1.3 Complex-division method<br />

Both <strong>of</strong> <strong>the</strong> methods discussed thus far have in common that <strong>the</strong>y require one phase calculation <strong>and</strong> one<br />

subtraction, <strong>and</strong> differ in <strong>the</strong> order <strong>of</strong> <strong>the</strong>se operations. There are however also methods to calculate ϕ O in<br />

only one computation step. They require two complete phase-shifted data sets <strong>and</strong> combine <strong>the</strong> steps <strong>of</strong><br />

phase calculation <strong>and</strong> difference formation in one formula. Examples <strong>of</strong> such calculations have been<br />

given before [Ste85, Ste90, Fac93, Hun93a, Sal96]; however <strong>the</strong> somewhat laborious derivation <strong>of</strong> <strong>the</strong><br />

formulae can be generalised <strong>and</strong> greatly simplified when treated by <strong>the</strong> formalism <strong>of</strong> complex division<br />

[Bur98b]. As mentioned above, <strong>the</strong> numerator in phase-shifting formulae should correspond to <strong>the</strong> sine<br />

<strong>and</strong> <strong>the</strong> denominator to <strong>the</strong> cosine <strong>of</strong> <strong>the</strong> phase angle to be found, so that we can switch to complex<br />

notation <strong>and</strong> write:<br />

ϕ<br />

ϕ<br />

O,<br />

i<br />

O,<br />

f<br />

ϕO,<br />

i<br />

mod 2π<br />

= arctan sin<br />

= arg( cosϕO, i + i sin ϕO,<br />

i ): = arg( zi<br />

)<br />

cosϕO,<br />

i<br />

ϕO,<br />

f<br />

π arctan sin<br />

. (3.24)<br />

mod 2 = = arg( cosϕO, f + i sin ϕO,<br />

f ): = arg( z f )<br />

cosϕ<br />

Now ∆ϕ can be determined according to<br />

where<br />

O,<br />

f<br />

⎛ z f ⎞<br />

∆ϕ mod 2π = ϕO, f − ϕO, i = arg( z f ) − arg( zi<br />

) = arg ⎜ ⎟ mod 2π<br />

,<br />

⎝ z<br />

(3.25)<br />

⎠<br />

i<br />

z<br />

z<br />

f<br />

i<br />

sinϕ sinϕ + cosϕ cosϕ<br />

=<br />

sinϕ cosϕ − sinϕ cosϕ<br />

+ i<br />

cos ϕ + sin ϕ<br />

O, i O, f O, i O,<br />

f O, f O, i O, i O,<br />

f<br />

cos<br />

2 ϕO, i + sin<br />

2 ϕO,<br />

i<br />

2 O, i<br />

2<br />

O,<br />

i<br />

. (3.26)<br />

Eventually we combine <strong>the</strong>se expressions to get<br />

⎛ z f ⎞ sinϕO, f cosϕO, i − sinϕO, i cosϕO,<br />

f<br />

∆ϕ mod 2π<br />

= arg⎜<br />

⎟ = arctan mod 2π<br />

,<br />

⎝ z ⎠ cosϕ cosϕ + sinϕ sinϕ<br />

(3.27)<br />

i<br />

O, i O, f O, i O,<br />

f<br />

which provides a generally valid instruction on how to compose <strong>the</strong> expressions <strong>of</strong> phase-shifting<br />

formulae; <strong>of</strong> course, <strong>the</strong> same result follows from <strong>the</strong> trigonometric relationship for <strong>the</strong> difference <strong>of</strong><br />

arctangents [Cre94]. Now we can instantly establish one-step calculations; for instance, from (3.16),<br />

<strong>and</strong> (3.17) changes to<br />

( I3 f − I1f )( I0i − I2i ) − ( I3i − I1i )( I0 f − I2<br />

f )<br />

∆ϕ mod 2π<br />

= arctan ,<br />

( I − I )( I − I ) + ( I − I )( I − I )<br />

(3.28)<br />

0i 2i 0 f 2 f 3i 1i 3 f 1f<br />

∆ϕ mod 2 π = arctan<br />

( I2 f − I1f )( 2I0i − I1i − I2i ) − ( I2i − I1i )( 2I0 f − I1f − I2<br />

f )<br />

3<br />

.<br />

( 2I − I − I )( 2I − I − I ) + 3( I − I )( I − I ) (3.29)<br />

0i 1i 2i 0 f 1f 2 f 2i 1i 2 f 1f

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!