07.11.2014 Views

Application and Optimisation of the Spatial Phase Shifting ...

Application and Optimisation of the Spatial Phase Shifting ...

Application and Optimisation of the Spatial Phase Shifting ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

66 Electronic or Digital Speckle Pattern Interferometry<br />

Z( xk<br />

) = I ( xk<br />

) ⊗ ( C( n) + iS( n))<br />

0 0<br />

,<br />

with ϕ( x) mod 2π<br />

= arg( Z( x ))<br />

(3.45)<br />

where arg(•) is <strong>the</strong> polar angle <strong>of</strong> a complex number; this corresponds to a notation c n =b n +ia n in (3.13)<br />

<strong>and</strong> is <strong>the</strong> starting point for <strong>the</strong> description <strong>of</strong> phase-shifting formulae by complex polynomials [Sur96].<br />

To illustrate <strong>the</strong> significance <strong>of</strong> <strong>the</strong> facts compiled thus far, we rewrite (3.16) as<br />

k0<br />

⎛ 3P0 x ⎞ P<br />

x<br />

I⎜<br />

⎟ − I<br />

⎛ ⎝ ⎠ ⎝ ⎜<br />

0 ⎞<br />

⎟<br />

4 4 ⎠<br />

ϕO<br />

mod 2 π = arctan<br />

P<br />

x<br />

I( ) − I<br />

⎛ ,<br />

⎝ ⎜<br />

0 ⎞<br />

0 ⎟<br />

2 ⎠<br />

(3.46)<br />

where P 0x =4 d p is <strong>the</strong> period <strong>of</strong> <strong>the</strong> carrier fringes, <strong>and</strong> α=2π/P 0x = 90°/d p . (This denotes <strong>the</strong> phase shift<br />

per pixel, not <strong>the</strong> phase gradient in °/m.) The filter functions are<br />

⎛ 3P0 x ⎞ ⎛ P0<br />

S( x)<br />

= δ ⎜ x − ⎟ −δ<br />

⎜ x −<br />

⎝ 4 ⎠ ⎝ 4<br />

⎛ P0<br />

C( x)<br />

= δ( x)<br />

− δ⎜<br />

x −<br />

⎝ 2<br />

x<br />

x<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

(3.47)<br />

<strong>and</strong> <strong>the</strong> corresponding spectra read<br />

~ ⎛ 3 ⎞ ⎛ 1 ⎞ ⎛ π ν<br />

S ( x ) exp i x exp i x sin<br />

x<br />

⎞<br />

ν = ⎜ π ν ⎟ − ⎜ π ν ⎟ = ⎜ exp iπ<br />

⎝ ν ⎠ ⎝ ν ⎠ ⎝ ν ⎠<br />

⎟ ⎛ ⎛ 1<br />

2<br />

2<br />

2<br />

⎜ ⎜<br />

4<br />

4<br />

2 ⎝ ⎝ 2<br />

+<br />

0x<br />

0x<br />

0x<br />

0x<br />

~ ⎛ 1 ⎞ ⎛ π ν<br />

C ( x ) exp i x sin<br />

x<br />

⎞<br />

ν<br />

exp<br />

x<br />

ν = − ⎜ π ν ⎟ = ⎜<br />

iπ<br />

⎝ ν ⎠ ⎝ ν ⎠<br />

⎟ ⎛ ⎛<br />

⎜<br />

⎝<br />

− 1<br />

1 2<br />

2<br />

⎜<br />

2<br />

2 ⎝ 2 + 2ν<br />

0x<br />

0x<br />

0x<br />

ν<br />

ν<br />

x<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

(3.48)<br />

with ν 0x =1/P 0x . In <strong>the</strong>se expressions, <strong>the</strong> sine terms represent <strong>the</strong> amplitudes <strong>and</strong> <strong>the</strong> exponentials<br />

represent <strong>the</strong> phases <strong>of</strong> <strong>the</strong> filter spectra, so that <strong>the</strong> behaviour <strong>of</strong> S<br />

~ ( ν ) <strong>and</strong> C<br />

~ ( ν ) can be read <strong>of</strong>f<br />

directly. Whenever we get a pure phase term, it is possible to plot <strong>the</strong> rest <strong>of</strong> <strong>the</strong> expressions as real<br />

amplitudes, which we will denote by amp(). For more complicated formulae, it is not always possible to<br />

arrive at separable expressions; but once S<br />

~ ( ν ) <strong>and</strong> C<br />

~ ( ν ) are established, one can obtain at least <strong>the</strong>ir<br />

x<br />

moduli <strong>and</strong> arguments separately.<br />

This now gives us a means to explore <strong>the</strong> transfer characteristics <strong>of</strong> phase-shifting formulae by plotting<br />

<strong>the</strong>ir spectra. Extending <strong>the</strong> common practice <strong>of</strong> plotting only <strong>the</strong> amplitude spectra, we will consider <strong>the</strong><br />

phase spectra as well. In all our spectra plots that follow, <strong>the</strong> frequencies will be normalised by ν 0x <strong>and</strong> <strong>the</strong><br />

range <strong>of</strong> frequencies will be from 0 to 2ν N , where ν N is <strong>the</strong> Nyqvist frequency 1/(2 d p ), corresponding to<br />

α=180°/d p . Consequently, when ν 0x = 90°/d p , 2ν N = 4ν 0x ; <strong>and</strong> for ν 0x = 120°/d p , 2ν N = 3ν 0x . The<br />

ordinates <strong>of</strong> <strong>the</strong> amplitude plots are dimensionless <strong>and</strong> scale with <strong>the</strong> a n <strong>and</strong> b n in <strong>the</strong> underlying sampling<br />

functions; <strong>the</strong> phases are shown in radians.<br />

x<br />

x<br />

x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!