07.11.2014 Views

Application and Optimisation of the Spatial Phase Shifting ...

Application and Optimisation of the Spatial Phase Shifting ...

Application and Optimisation of the Spatial Phase Shifting ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2 <strong>Phase</strong>-shifting ESPI 73<br />

to think <strong>of</strong> adding weighted <strong>and</strong> unweighted phasors, respectively, as detailed in [Stroe96]. Therefore, <strong>the</strong><br />

N <strong>and</strong> D terms are averaged according to [Schwi83, Har87, Schwi93]<br />

which results in<br />

ϕ '<br />

O<br />

ϕ '<br />

O<br />

N<br />

mod 2π<br />

= arctan<br />

D<br />

+ N<br />

+ D<br />

0 1<br />

, (3.55)<br />

0 1<br />

( I − I )<br />

2sin<br />

ϕ'<br />

O<br />

mod 2π<br />

= arctan = arctan<br />

2cos<br />

ϕ'<br />

I − I − I + I<br />

O<br />

2 2 1<br />

; (3.56)<br />

0 1 2 3<br />

<strong>and</strong> this is <strong>the</strong> formula given in [Schwi93], subsequently referred to as 3+3 averaging formula. Its transfer<br />

properties are shown in Fig. 3.15.<br />

4<br />

3.14<br />

3<br />

2<br />

1.57<br />

arg( S<br />

~ ( νx))<br />

arg( C<br />

~ ( ν x ))<br />

1<br />

0<br />

0 1 2 3 4<br />

-1<br />

ν x /ν 0x<br />

0<br />

0 1 2 3 4<br />

ν x /ν 0x<br />

-3.14<br />

-2<br />

-3<br />

-4<br />

amp( S<br />

~ ( νx))<br />

amp( C<br />

~ ( ν x ))<br />

Fig. 3.15: Filter spectrum for 3+3-step-90° phase-sampling formula (3.56); left: amplitudes, right: phases.<br />

As in (3.19), <strong>the</strong> <strong>of</strong>fset <strong>of</strong> <strong>the</strong> reconstructed phase is –45°; but <strong>the</strong> phases <strong>of</strong> S<br />

~ ( ν x ) <strong>and</strong> C<br />

~ ( ν x )<br />

~ ~<br />

are in quadrature for all ν x , <strong>and</strong> also <strong>the</strong> gradients <strong>of</strong> S ( ν x ) <strong>and</strong> C(<br />

ν x ) are matched:<br />

~ ~<br />

dS ( ν ) / d ν | = dC ( ν ) / d ν | . This assures stable performance for a larger range <strong>of</strong> deviations,<br />

x x ν<br />

x x ν<br />

0x<br />

0x<br />

because S<br />

~ ( ν ) <strong>and</strong> C<br />

~ ( ν ) are nearly equal for a broader range <strong>of</strong> ν x . In [Ser97b], an iterative search for<br />

x<br />

x<br />

smallest miscalibration sensitivity showed that (3.56) is an almost optimal solution. The <strong>of</strong>fset-free<br />

version <strong>of</strong> <strong>the</strong> 3+3 formula, also given in [Schwi93], is<br />

ϕ<br />

O<br />

mod 2π<br />

-1.57<br />

− I0 + 3I1 − I2 − I3<br />

= arctan ; (3.57)<br />

I + I − 3I + I<br />

0 1 2 3<br />

this formula shows equal amplitudes for S ~ ( ν ) <strong>and</strong> C ~ ( ν ) , similar to (3.19), but much better quadrature<br />

stability than (3.19), as to be seen in Fig. 3.16.<br />

5<br />

3.14<br />

4<br />

1.57<br />

3<br />

2<br />

0<br />

0 1 2<br />

ν x /ν 0x 3 4<br />

amp( S<br />

~ ( ν ))<br />

1<br />

x<br />

amp( C<br />

~ ( ν x ))<br />

0<br />

0 1 2 3 4<br />

-1.57<br />

ν x /ν 0x -3.14<br />

arg( S<br />

~ ( νx))<br />

arg( C<br />

~ ( ν x ))<br />

Fig. 3.16: Filter spectrum for 3+3-step-90° phase-sampling formula (3.57); left: amplitudes, right: phases.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!