07.02.2013 Views

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

128j 4 Mechanical Characteristics of <strong>Carbon</strong> <strong>Nanotube</strong>–<strong>Metal</strong> Nanocomposites<br />

nanotubes). Mechanics of Composite<br />

Materials, 40, 179–190.<br />

3 Bhushan, B. (2005) Nanotribology <strong>and</strong><br />

nanomechanics. Wear, 259, 1507–1531.<br />

4 Gutz, I.A., Rodger, A.A., Guz, A.N. <strong>and</strong><br />

Rushchitsky, J.J. (2007) Developing the<br />

mechanical models for nanomaterials.<br />

<strong>Composites</strong> A, 38, 1234–1250.<br />

5 Liu, W.K., Park, H.S., Qian, D., Karpov,<br />

E.G., Kadowaki, H. <strong>and</strong> Wagner, G.J.<br />

(2006) Bridging scale methods for<br />

nanomechanics <strong>and</strong> materials. Computer<br />

Methods in Applied Mechanics <strong>and</strong><br />

Engineering, 195, 1407–1421.<br />

6 Cox, H.L. (1952) The elasticity <strong>and</strong><br />

strength of paper <strong>and</strong> other fibrous<br />

materials. British Journal of Applied Physics,<br />

3, 72–79.<br />

7 Nardone, V.C. <strong>and</strong> Prewo, K.M., (1986) On<br />

the strength of discontinuous silicon<br />

carbide reinforced aluminum composites.<br />

Scripta <strong>Metal</strong>lurgica, 20, 43–48.<br />

8 Nardone, V.C. (1987) Assessment of<br />

models used to predict the strength of<br />

discontinuous silicon carbide reinforced<br />

aluminum alloys. Scripta <strong>Metal</strong>lurgica, 21,<br />

1313–1318.<br />

9 Ryu, H.J., Cha, S.I. <strong>and</strong> Hong, S.H. (2003)<br />

Generalized shear-lag model for load<br />

transfer in SiC/Al metal-matrix<br />

composites. Journal of Materials Research,<br />

18, 2851–2858.<br />

10 Halpin, J.C. <strong>and</strong> Kardos, J.L. (1976) The<br />

Halpin-Tsai equations: A review. Polymer<br />

Engineering <strong>and</strong> Science, 16, 344–352.<br />

11 Mallick, P.K. (1993) Fiber-<strong>Reinforced</strong><br />

<strong>Composites</strong>: Materials, Manufacturing <strong>and</strong><br />

Design, Marcel Dekker, New York, USA,<br />

p. 130.<br />

12 An, L., Xu, W., Rajagopalan, S., Wang, C.,<br />

Wang, H., Fan, Y., Zhang, L., Jiang, D.,<br />

Kapat, J., Chow, L., Guo, B., Liang, J. <strong>and</strong><br />

Vaidyanathan, R. (2004) <strong>Carbon</strong>-nanotubereinforced<br />

polymer-derived ceramic<br />

composites. Advanced Materials, 16,<br />

2036–2040.<br />

13 George, R., Kashyap, K.T., Rahul, R. <strong>and</strong><br />

Yamdagni, S. (2005) Strengthening in<br />

carbon nanotube/aluminum (CNT/Al)<br />

composites. Scripta Materialia, 53,<br />

1159–1163.<br />

14 Walters, D.A., Ericson,L.M., Casavant,M.J.,<br />

Liu, J., Colbert, D.T., Smith, K.A. <strong>and</strong><br />

Smalley, R.E. (1999) Elastic strain of freely<br />

suspended single-wall carbon nanotube<br />

ropes.Applied PhysicsLetters, 74,3803–3805.<br />

15 Kutana, A., Giapis, K.P., Chen, J.Y. <strong>and</strong><br />

Collier, C.P. (2006) Amplitude response of<br />

single-wall carbon nanotube probes during<br />

tapping mode atomic force microscopy:<br />

Modeling <strong>and</strong> experiment. Nano Letters, 6,<br />

1669–1673.<br />

16 Oliver, W.C. <strong>and</strong> Pharr, G.M. (1992) An<br />

improved technique for determining<br />

hardness <strong>and</strong> elastic modulus using load<br />

<strong>and</strong> displacement sensing indentation<br />

experiments. Journal of Materials Research,<br />

7, 1564–1583.<br />

17 Oliver, W.C. <strong>and</strong> Pharr, G.M. (2004)<br />

Measurement of hardness <strong>and</strong> elastic<br />

modulus by instrumented indentation:<br />

Advances in underst<strong>and</strong>ing <strong>and</strong><br />

refinements to methodology. Journal of<br />

Materials Research, 19, 3–20.<br />

18 Lee, S.W., Choi, H.J., Kim, Y. <strong>and</strong> Bae, D.H.<br />

(2007) Deformation behavior of<br />

nanoparticle/fiber-reinforced<br />

nanocrystalline Al-matrix composites.<br />

Materials Science <strong>and</strong> Engineering A,<br />

449–451, 782–785.<br />

19 Goh, C.S., Wei, J., Lee, L.C. <strong>and</strong> Gupta, M.<br />

(2008) Ductility improvement <strong>and</strong> fatigue<br />

studies in Mg-CNT nanocomposites.<br />

<strong>Composites</strong> Science <strong>and</strong> Technology, 68,<br />

1432–1439.<br />

20 Kim, K.T., Eckert, J., Menzel, S.B.,<br />

Gemming, T. <strong>and</strong> Hong, S.H. (2008)<br />

Grain refinement assisted<br />

strengthening of carbon nanotube<br />

reinforced copper matrix nanocomposites.<br />

Applied Physics Letters, 92, 121901(1)–<br />

121901(3).<br />

21 Zhang, Z. <strong>and</strong> Chen, D.L. (2006)<br />

Consideration of strengthening effect in<br />

particulate-reinforced metal matrix<br />

nanocomposites: A model for prediction<br />

their yield strength. Scripta Materialia, 54,<br />

1321–1326.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!