07.02.2013 Views

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

182j 6 Physical Properties of <strong>Carbon</strong> <strong>Nanotube</strong>–<strong>Ceramic</strong> Nanocomposites<br />

p Filler volume fraction<br />

pc Percolation threshold<br />

P Occupied probability of the lattice<br />

PC Percolation probability of the lattice<br />

s0 Dielectric exponent<br />

SE Shielding effectiveness<br />

t Conductivity exponent<br />

tan d Tangent loss or dissipation factor<br />

V0 Potential barrier height<br />

w Internanotube distance<br />

x Critical exponent<br />

y Critical exponent<br />

e Dielectric constant<br />

e0 Real permittivity<br />

e00 Imaginary permittivity<br />

e Complex permittivity<br />

s Electrical conductivity<br />

u Frequency<br />

References<br />

1 Mamunya, Y.P., Davydenko, V.V., Pissis, P.<br />

<strong>and</strong> Lebedev, E.V. (2002) Electrical <strong>and</strong><br />

thermal conductivity of polymers<br />

filled with metal powders. European<br />

Polymer Journal, 38, 1887–1897.<br />

2 Psarras, G.C., Manolakaki, E. <strong>and</strong><br />

Tsangaris, G.M. (2002) Electrical<br />

relaxations in polymeric particulate<br />

composites of epoxy resin <strong>and</strong> metal<br />

particles. <strong>Composites</strong> A, 33, 375–384.<br />

3 Zhan, G., Kuntz, J.D. <strong>and</strong><br />

Mukherjee, A.K. (2005) <strong>Ceramic</strong> materials<br />

reinforced with single-wall carbon<br />

nanotubes as electrical conductors.<br />

US Patent 6875374.<br />

4 Stauffer, D. <strong>and</strong> Aharony, A. (1992)<br />

Introduction to Percolation Theory, 2nd edn,<br />

Taylor & Francis, London.<br />

5 Sahimi, M. (1994) Applications of<br />

Percolation Theory, Taylor & Francis,<br />

London.<br />

6 Celzard, A., McRae, E., Deleuze, C.,<br />

Dufort, M., Furdin, J. <strong>and</strong> Mareche, J.F.<br />

(1996) Critical concentration in<br />

percolating systems containing a<br />

high-aspect-ratio filler. Physical Review<br />

B-Condensed Matter, 53, 6209–6214.<br />

7 S<strong>and</strong>ler, J.K., Jirk, J.E., Kinloch, I.A.,<br />

Shaffer, M.S. <strong>and</strong> Windle, A.H. (2003)<br />

Ultra-low electrical percolation threshold<br />

in carbon nanotube-epoxy composites.<br />

Polymer, 44, 5893–5899.<br />

8 Shenogina, N., Shenogin, S., Xue, L. <strong>and</strong><br />

Keblinski, P. (2005) On the lack of thermal<br />

percolation in carbon nanotubes<br />

composites. Applied Physics Letters, 87,<br />

1331061–1331063.<br />

9 Biercuk, M.J., Liaguno, M.C.,<br />

Radosavljevic, M., Hyun, J.K., Johnson,<br />

A.T. <strong>and</strong> Fischer, J.E. (2002) <strong>Carbon</strong><br />

nanotube composites for thermal<br />

management. Applied Physics Letters, 80,<br />

2767–2769.<br />

10 Pettersson, S. <strong>and</strong> Mahan, G.D. (1990)<br />

Theory of the thermal boundary resistance<br />

between dissimilar lattices. Physical Review<br />

B-Condensed Matter, 42, 7386–7390.<br />

11 Zhan, G.D., Kuntz, J.D., Garay, J.E. <strong>and</strong><br />

Mukherjee, A.K. (2003) Electrical<br />

properties of nanoceramics reinforced

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!