07.02.2013 Views

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

Carbon Nanotube Reinforced Composites: Metal and Ceramic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

84j 2 <strong>Carbon</strong> <strong>Nanotube</strong>–<strong>Metal</strong> Nanocomposites<br />

(2,4)Al-1Si nanocomposites fabricated by<br />

ultrasonic cavitation based solidification<br />

processing. Materials Science <strong>and</strong><br />

Engineering A, 486, 357–362.<br />

58 Honma, T., Nagai, K., Katou, A., Arai, K.,<br />

Suganuma, M. <strong>and</strong> Kamado, S. Synthesis<br />

of high-strength magnesium alloy<br />

composites reinforced with Si-coated<br />

carbon nanofibers. Scripta Materialia,<br />

DOI:10.1016/jscriptamat.2008.11.024.<br />

59 Hassan, S.F. <strong>and</strong> Gupta, M. (2006) Effect<br />

of type of primary processing on the<br />

microstructure, CTE <strong>and</strong> mechanical<br />

properties of magnesium/alumina<br />

nanocomposites. Composite Structures, 72,<br />

19–26.<br />

60 Gupta, M., Lai, M.O. <strong>and</strong> Soo, C.Y. (1996)<br />

Effect of type of processing on the<br />

microstructural features <strong>and</strong> mechanical<br />

properties of Al-Cu/SiC metal matrix<br />

composites. Materials Science <strong>and</strong><br />

Engineering A, 210, 114–122.<br />

61 Ho, K.F., Gupta, M. <strong>and</strong> Srivatsan, T.S.<br />

(2004) The mechanical behavior of<br />

magnesium alloy AZ91 reinforced<br />

with fine copper particulates. Materials<br />

Science <strong>and</strong> Engineering A, 369,<br />

302–308.<br />

62 Goh, C.S., Wei, J., Lee, L.C. <strong>and</strong> Gupta, M.<br />

(2006) Development of novel carbon<br />

nanotube reinforced magnesium<br />

nanocomposites using the powder<br />

metallurgy technique. Nanotechnology, 17,<br />

7–12.<br />

63 Shimizu, Y., Miki, S., Soga, T., Itoh, I.,<br />

Todoroki, H., Hosono, T., Sakaki, K.,<br />

Hayashi, T., Kim, Y.A., Endo, M.,<br />

Morimoto, S. <strong>and</strong> Koide, A. (2008) Multiwalled<br />

carbon nanotube-reinforced<br />

magnesium alloy composites. Scripta<br />

Materialia, 58, 267–270.<br />

64 Ma, Z.Y. (2008) Friction stir processing<br />

technology: A review. <strong>Metal</strong>lurgical <strong>and</strong><br />

Materials Transactions A-Physical<br />

<strong>Metal</strong>lurgy <strong>and</strong> Materials Science,<br />

39, 642–658.<br />

65 Mishra, R.S., Ma, Z.Y. <strong>and</strong> Charit, I.<br />

(2003) Friction stir processing: a novel<br />

technique for fabrication of surface<br />

composite. Materials Science <strong>and</strong><br />

Engineering A, 341, 307–310.<br />

66 Morisada, Y., Fujii, H., Nagaoka, T. <strong>and</strong><br />

Fukusumi, M. (2006) MWCNTs/AZ31<br />

surface composites fabricated by friction<br />

stir processing. Materials Science <strong>and</strong><br />

Engineering A, 419, 344–348.<br />

67 Larsen, J.M., Russ, S.M. <strong>and</strong> Jones, J.W.<br />

(1995) An evaluation of fiber-reinforced<br />

titanium matrix composites for advanced<br />

high-temperature aerospace applications.<br />

<strong>Metal</strong>lurgical <strong>and</strong> Materials Transactions<br />

A-Physical <strong>Metal</strong>lurgy <strong>and</strong> Materials<br />

Science, 26, 3211–3223.<br />

68 Loretto, M.H. <strong>and</strong> Konitzer, D.G. (1990)<br />

The effect of matrix reinforcement<br />

reaction on fracture in Ti-6Al-4V-base<br />

composites. <strong>Metal</strong>lurgical <strong>and</strong> Materials<br />

Transactions A-Physical <strong>Metal</strong>lurgy <strong>and</strong><br />

Materials Science, 21, 1579–1587.<br />

69 Kim, Y.J., Chung, H. <strong>and</strong> Kang, S.J. (2002)<br />

Processing <strong>and</strong> mechanical properties of<br />

Ti-6Al-4V/TiC in situ composite fabricated<br />

by gas-solid reaction. Materials Science <strong>and</strong><br />

Engineering A, 333, 343–350.<br />

70 Eylon, D.H. <strong>and</strong> Froes, F.H. (1990)<br />

Titanium powder metallurgy products, in<br />

ASM H<strong>and</strong>boos: Properties <strong>and</strong> Selection:<br />

Nonferrous Alloys <strong>and</strong> Special-Purpose<br />

Materials, vol. 2, ASM International,<br />

Materials Park, Ohio, USA, DOI:10.1361/<br />

asmhba0001083.<br />

71 Tjong, S.C. <strong>and</strong> Mai, Y.W. (2008)<br />

Processing-structure-property aspects of<br />

particulate- <strong>and</strong> whisker-reinforced<br />

titanium matrix composites. <strong>Composites</strong><br />

Science <strong>and</strong> Technology, 68, 583–601.<br />

72 Kuzumaki, T., Ujie, O., Ichinose, H. <strong>and</strong><br />

Ito, K. (2000) Mechanical characteristics<br />

<strong>and</strong> preparation of carbon nanotube fiber<br />

reinforced Ti composite. Advanced<br />

Engineering Materials, 2, 416–418.<br />

73 Tjong, S.C. <strong>and</strong> Lau, K.C. (2000) Abrasive<br />

wear behavior of TiB2 particle-reinforced<br />

copper matrix composites. Materials<br />

Science <strong>and</strong> Engineering A, 282, 183–186.<br />

74 Tjong, S.C. <strong>and</strong> Ma, Z.Y. (2000) High<br />

temperature creep behavior of in-situ TiB2<br />

particulate reinforced copper-based

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!