17.12.2012 Views

Membrane and Desalination Technologies - TCE Moodle Website

Membrane and Desalination Technologies - TCE Moodle Website

Membrane and Desalination Technologies - TCE Moodle Website

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

86 J. Ren <strong>and</strong> R. Wang<br />

where A is the cross-section area of nascent hollow fiber membrane in the air gap, which can<br />

be described as:<br />

combining with the following equation<br />

A ¼ Qp<br />

; ð40Þ<br />

vzðzÞ<br />

tzzðzÞ<br />

vzðzÞ<br />

tzzð0Þ<br />

¼ ; ð41Þ<br />

vzð0Þ<br />

here tzzð0Þ <strong>and</strong> vzð0Þ are the tension stress <strong>and</strong> the velocity of the die-swell at the exit of the<br />

spinneret.<br />

The tensile force F can be obtained at any point in the air gap (z) or at the air gap distance L:<br />

F ¼ k n<br />

n 1<br />

¼ k pðD2 0 d2 0 Þ<br />

4<br />

n vzðzÞ<br />

vzð0Þ<br />

n<br />

n 1<br />

n 1<br />

n<br />

1<br />

n<br />

vzð0Þ<br />

z<br />

n<br />

A0;<br />

n DR n 1<br />

n 1 n vzð0Þ<br />

L<br />

where, A0 is the cross-section area of the nascent hollow fiber membranes at the die-swell.<br />

DR, D0 <strong>and</strong> d0 are defined in Eq. (35). The velocity distribution of the nascent hollow fiber in<br />

the air gap can be described as:<br />

h<br />

n 1 z<br />

i n<br />

n 1<br />

vzðzÞ ¼vzð0Þ DR n 1 þ 1 : ð43Þ<br />

L<br />

And the elongation rate inside the air gap can be written as:<br />

!<br />

vzðzÞ n<br />

h<br />

1 z<br />

i 1 n 1<br />

n 1 DR n 1<br />

¼ vzð0Þ DRn n 1 þ 1<br />

; ð44Þ<br />

dt n 1 L L<br />

where vzðzÞ<br />

is the elongation rate at the point z in the air gap. And the tensile stress at the<br />

dt<br />

bottom of the air gap (tzzðLÞ) is described as:<br />

tzzðLÞ ¼kDR<br />

n<br />

n 1<br />

n<br />

n 1<br />

DR n 1 n vzð0Þ<br />

L<br />

n<br />

:<br />

ð42Þ<br />

n<br />

: ð45Þ<br />

The elongation rate inside the air gap <strong>and</strong> the tensile stress at the bottom of the air gap are<br />

strongly controlled by DR, the air gap distance (L), <strong>and</strong> the velocity of the polymer solution at<br />

the die-swell.<br />

The theoretical velocity distribution in the air gap at different power numbers (with n < 1,<br />

n = 1 <strong>and</strong> n > 1) is shown in Fig. 2.32. In fact, when the hollow fibers are spun into the air gap<br />

from the spinneret, the solvent evaporation, temperature change, the exchange between the<br />

polymer solution <strong>and</strong> the bore fluid, the phase inversion <strong>and</strong> solidification strongly influence<br />

the spinline dynamics in the air gap. The actual spinline dynamics can be divided into three<br />

regions, which is shown in Fig. 2.32:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!