23.12.2014 Views

OCTOBER 19-20, 2012 - YMCA University of Science & Technology

OCTOBER 19-20, 2012 - YMCA University of Science & Technology

OCTOBER 19-20, 2012 - YMCA University of Science & Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proceedings <strong>of</strong> the National Conference on<br />

Trends and Advances in Mechanical Engineering,<br />

<strong>YMCA</strong> <strong>University</strong> <strong>of</strong> <strong>Science</strong> & <strong>Technology</strong>, Faridabad, Haryana, Oct <strong>19</strong>-<strong>20</strong>, <strong>20</strong>12<br />

Fig. 4. 4-bar Linkages with clearance<br />

From the close loop vector relation<br />

L<br />

c<br />

c<br />

iθ1<br />

iθ2<br />

iθ3<br />

iθ4<br />

iγ<br />

2 iγ<br />

3<br />

1 e + L2e<br />

+ L3e<br />

+ L4e<br />

+ r2e<br />

+ r3<br />

e =<br />

Fig .5. 4-bar Linkage with clearance: vector loop<br />

By separating Eq. (7), into its real part and imaginary part and using trigonometric relations,<br />

joint clearance can be expressed as a function <strong>of</strong> θ and γ<br />

2 2 respectively:<br />

0<br />

⎛<br />

2 ⎞<br />

c −1⎜<br />

− B ± B − 4AC<br />

θ =<br />

⎟<br />

3 2 tan<br />

(8)<br />

⎜ 2A<br />

⎟<br />

⎝<br />

⎠<br />

c<br />

⎡ L<br />

⎤<br />

1<br />

− L2<br />

cosθ2<br />

− r2<br />

cosγ<br />

2<br />

− L3<br />

cosθ3<br />

− r3<br />

cosγ<br />

3<br />

⎢<br />

⎥<br />

⎣<br />

L4<br />

⎦<br />

c −1<br />

θ<br />

4<br />

= cos<br />

(9)<br />

(7)<br />

c c<br />

3 and θ 4<br />

θ with<br />

Where the superscript c denotes the value with clearance. A , B,<br />

C terms are given, with joint clearance<br />

respectively<br />

A = −( L1<br />

+ L3<br />

)( 2L2<br />

cosθ2<br />

+ 2r2<br />

cos γ 2 ) + 2r3<br />

cos γ 3<br />

+ 2L2r2<br />

cos( θ2<br />

− γ 2 ) + 2L2r3<br />

cos( θ2<br />

− γ 3) + 2r2r3<br />

cos( γ 2 − γ 3)<br />

2 2 2 2 2 2<br />

+ 2L1L<br />

3 + L1<br />

+ L2<br />

+ L3<br />

− L4<br />

+ r2<br />

+ r<br />

(10)<br />

3<br />

B = 4L<br />

( L sin θ + r sin γ + r γ )<br />

(11)<br />

2 2 2 2 3 3<br />

C = ( L3<br />

− L1<br />

) 2L2<br />

cosθ<br />

2 + 2r2<br />

cos γ 2 + 2r3<br />

cos γ 3 +<br />

2L2r2<br />

cos θ 2 − γ 2 + 2L2r3<br />

cos θ 2 − γ 3 + 2r2<br />

r3<br />

cos γ 2 − γ 3<br />

2<br />

1<br />

+ L<br />

+ L<br />

3 sin<br />

( ) ( ) ( )<br />

2<br />

2<br />

+ L<br />

2<br />

3<br />

− L<br />

2<br />

4<br />

2<br />

2<br />

+ r<br />

2<br />

3<br />

+ r<br />

− 2L<br />

L<br />

As shown in Fig.4, the position <strong>of</strong> the coupler point ( x y)<br />

clearance, respectively:<br />

c<br />

x<br />

c<br />

( θ ) + r cosγ<br />

+ A′<br />

P ( θ + β )<br />

P = L2 cos<br />

2 2 2<br />

cos<br />

3<br />

c<br />

c<br />

( θ ) + r sinγ<br />

+ A′<br />

P ( θ + β )<br />

Py<br />

= L2 sin 2 2 2 sin 3<br />

Where<br />

c<br />

x<br />

clearance.<br />

P ,<br />

c<br />

P denote the<br />

y<br />

X and Y<br />

1 3<br />

(12)<br />

P , relative to the crank pivot A<br />

1<br />

is given with joint<br />

(13)<br />

(14)<br />

coordinate values for the path <strong>of</strong> the coupler point in considering the joint<br />

In the kinematic analysis <strong>of</strong> the 4-bar mechanism with double joint clearance, it is necessary to determine the<br />

position <strong>of</strong> mass centre for moving links and then their corresponding velocities and accelerations. So in the<br />

case <strong>of</strong> joint clearance these positions are derived from the vector representation <strong>of</strong> the mechanism in Fig.5.<br />

250

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!