10.12.2015 Views

Postharvest Biology and Technology of Fruits, Vegetables, and Flowers

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

138 POSTHARVEST BIOLOGY & TECHNOLOGY OF FRUITS, VEGETABLES, & FLOWERS<br />

Rodriguez, F.I., Esch, J.J., Hall, A.E., Binder, B.M., Schaller, G.E., <strong>and</strong> Bleecker, A.B. 1999. A copper c<strong>of</strong>actor<br />

for the ethylene receptor ETR1 from Arabidopsis. Science, 283: 996–998.<br />

Sakai, H., Hua, J., Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B., <strong>and</strong> Meyerowitz, E.M. 1998. ETR2 is an<br />

ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 95: 5812–5817.<br />

Sato-Nara, K., Yuhashi, K., Higashi, K., Hosoya, K., Kubota, M., <strong>and</strong> Ezura, H. 1999. Stage- <strong>and</strong> tissue-specific<br />

expression <strong>of</strong> ethylene receptor homologue genes during fruit development in muskmelon. Plant Physiol., 120:<br />

321–329.<br />

Schaller, G.E. <strong>and</strong> Bleecker, A.B. 1995. Ethylene-binding sites generated in yeast expressing the Arabidopsis<br />

ETR1 gene. Science, 270: 1809–1811.<br />

Schaller, G.E., Ladd, A.N., Lanahan, M.B., Spanbauer, J.N., <strong>and</strong> Bleecker, A.B. 1995. The ethylene response<br />

mediator ETR1 from Arabidopsis forms a disulphide-linked dimer. Proc. Natl. Acad. Sci. U.S.A., 270: 12526–<br />

12530.<br />

Serek, M., Woltering, E.J., Sisler, E.C., Frello, S., <strong>and</strong> Srisk<strong>and</strong>arajah, S. 2006. Controlling ethylene responses in<br />

flowers at the receptor level. Biotechnol. Adv., 24: 368–381.<br />

Shaw, J.F., Chen, H.H., Tsai, M.F., Kuo, C.I., <strong>and</strong> Huan, L.C. 2002. Extended flower longevity for Petunia hybrida<br />

plants transformed with boers, a mutated ERS gene <strong>of</strong> Brassica oleracea. Mol. Breed., 9: 211–216.<br />

Shibuya, K., Nagata, M., Tanikawa, N., Yoshioka, T., Hashiba, T., <strong>and</strong> Satoh, S. 2002. Comparison <strong>of</strong> mRNA<br />

levels <strong>of</strong> three ethylene receptors in senescing flowers <strong>of</strong> carnation (Dianthus caryophyllus L.). J. Exp. Bot.,<br />

53: 399–406.<br />

Stepanova, A.N., <strong>and</strong> Alonso, J.M. 2005. Ethylene signaling pathway. Sci. STKE, 22: cm3.<br />

Takada, K., Ishimaru, K., Minamisawa, K., Kamada, H., <strong>and</strong> Ezura, H. 2005. Expression <strong>of</strong> a mutated melon<br />

ethylene receptor gene Cm-ERS1/H69A affects stamen development inNicotiana tabacum. Plant Sci., 169:<br />

935–942.<br />

Takahashi, H., Kobayashi, T., Sato-Nara, K., Tomita, K.O., <strong>and</strong> Ezura, H. 2002. Detection <strong>of</strong> ethylene receptor<br />

protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). J. Exp. Bot., 53: 415–422.<br />

Tan, H., Liu, X., Ma, N., Xue, J., Lu, W.L., Bai, J., <strong>and</strong> Gao, J. 2006. Ethylene-influenced flower opening <strong>and</strong><br />

expression <strong>of</strong> genes encoding Etrs, Ctrs, <strong>and</strong> Ein3s in two cut rose cultivars. <strong>Postharvest</strong> Biol. Technol., 40:<br />

97–105.<br />

Tanase, K. <strong>and</strong> Ichimura, K. 2006. Expression <strong>of</strong> ethylene receptors Dl-ERS1-3 <strong>and</strong> Dl-ERS2, <strong>and</strong> ethylene response<br />

during flower senescence in Delphinium. J. Plant Physiol., 163: 1159–1166.<br />

Tieman, D.V., Taylor, M.G., Ciardi, J.A., <strong>and</strong> Klee, H.J. 2000. The tomato ethylene receptors NR <strong>and</strong> LeETR4<br />

are negative regulators <strong>of</strong> ethylene response <strong>and</strong> exhibit functional compensation within a multigene family.<br />

Proc. Natl. Acad. Sci. U.S.A., 97: 5663–5668.<br />

Trainotti, L., Pavanello, A., <strong>and</strong> Casadoro, G. 2005. Different ethylene receptors show an increased expression<br />

during the ripening <strong>of</strong> strawberries: does such an increment imply a role for ethylene in the ripening <strong>of</strong> these<br />

non-climacteric fruits? J. Exp. Bot., 56: 2037–2046.<br />

Wang, W., Hall, A.E., O’Malley, R., <strong>and</strong> Bleecker, A.B. 2003. Canonical histidine kinase activity <strong>of</strong> the transmitter<br />

domain <strong>of</strong> the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc. Natl.<br />

Acad. Sci. U.S.A., 100: 352–357.<br />

Wang, Y. <strong>and</strong> Kumar, P.P. 2004. Heterologous expression <strong>of</strong> Arabidopsis ERS1 causes delayed senescence in<br />

cori<strong>and</strong>er. Plant Cell Rep., 22: 678–683.<br />

Wilkinson, J.Q., Lanahan, M.B., Clark, D.G., Bleecker, A.B., Chang, C., Meyerowitz, E.M., <strong>and</strong> Klee, H.J. 1997.<br />

A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat.<br />

Biotechnol., 15: 444–447.<br />

Yamamoto, K., Komatsu, Y., Yokoo, Y., <strong>and</strong> Furukawa, T. 1994. Delaying flower opening <strong>of</strong> cut roses by cispropenylphosphonic<br />

acid. J. Jpn. Soc. Hort. Sci., 63: 159–166.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!