10.12.2015 Views

Postharvest Biology and Technology of Fruits, Vegetables, and Flowers

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PHOSPHOLIPASE D, MEMBRANE DETERIORATION, AND SENESCENCE 237<br />

Paliyath, G., Lynch, D.V., <strong>and</strong> Thompson, J.E. 1987. Regulation <strong>of</strong> membrane phospholipid catabolism in senescing<br />

carnation flowers. Physiol. Plant, 71: 503–511.<br />

Paliyath, G., Murr, D.P., <strong>and</strong> Thompson, J.E. 1995. Catabolism <strong>of</strong> phosphorylated phosphatidylinositols by carnation<br />

petal microsomal membranes enriched in plasmalemma <strong>and</strong> endoplasmic reticulum. Physiol. Mol. Biol.<br />

Plant, 1: 141–150.<br />

Paliyath, G., Murr, D.P., Yada, R.Y., <strong>and</strong> Pinhero, R.G. 2003. Inhibition <strong>of</strong> phospholipase D. US patent no 6514914.<br />

Paliyath, G., Pinhero, R.G., Yada, R.Y., <strong>and</strong> Murr, D.P. 1999. Effect <strong>of</strong> processing conditions on phospholipase D<br />

activity <strong>of</strong> corn kernel subcellular fractions. J. Agric. Food Chem., 47: 2579–2588.<br />

Paliyath, G., Rao, M.V., Ghosh, S., Serrano, R., Murr, D.P., <strong>and</strong> Thompson, J.E. 1997. Changes in the activities <strong>of</strong><br />

proton pump <strong>and</strong> ATPase in microsomal membranes from carnation flower petals during senescence. Physiol.<br />

Mol. Biol. Plant, 3: 63–76.<br />

Paliyath, G. <strong>and</strong> Thompson, J.E. 1987. Calcium <strong>and</strong> calmodulin regulated breakdown <strong>of</strong> phospholipid by microsomal<br />

membranes from bean cotyledons. Plant Physiol., 83: 63–68.<br />

Paliyath, G. <strong>and</strong> Thompson, J.E. 1988. Senescence-related changes in ATP-dependent uptake <strong>of</strong> calcium into<br />

microsomal vesicles from carnation petals. Plant Physiol., 88: 295–302.<br />

Paliyath, G. <strong>and</strong> Thompson, J.E. 1990. Evidence for early changes in membrane structure during postharvest<br />

development <strong>of</strong> cut carnation flowers. New Phytologist, 114: 555–562.<br />

Palta, J.P., Whitaker, B.D., <strong>and</strong> Weiss, L.S. 1993. Plasma membrane lipids associated with genetic variability in<br />

freezing tolerance <strong>and</strong> cold acclimation <strong>of</strong> Solanum species. Plant Physiol., 103: 793–803.<br />

Pappan, K., Austin-Brown, S., Chapman, K.D., <strong>and</strong> Wang, X. 1998. Substrate selectivities <strong>and</strong> lipid modulation<br />

<strong>of</strong> plant phospholipase D-alpha, -beta, <strong>and</strong> -gamma. Arch. Biochem. Biophys., 353: 131–140.<br />

Pappan, K., Qin, W., Dyer, J.H., Zheng, L., <strong>and</strong> Wang, X. 1997. Molecular cloning <strong>and</strong> functional analysis <strong>of</strong><br />

polyphosphoinositide-dependent phospholipase D, PLD beta from Arabidopsis. J. Biol. Chem., 272: 7055–<br />

7061.<br />

Pappan, K., Zheng, L., Krishnamoorthi, R., <strong>and</strong> Wang, X. 2004. Evidence for <strong>and</strong> characterization <strong>of</strong> Ca 2+ binding<br />

to the catalytic region <strong>of</strong> Arabidopsis thaliana phospholipase Dβ. J. Biol. Chem., 279: 47833–47839.<br />

Pauls, K.P. <strong>and</strong> Thompson, J.E. 1984. Evidence for the accumulation <strong>of</strong> peroxidized lipids in membranes <strong>of</strong><br />

senescing cotyledons. Plant Physiol., 75: 1152–1157.<br />

Pinhero, R.G., Almquist, K.C., Novotna, Z., <strong>and</strong> Paliyath, G. 2003. Developmental regulation <strong>of</strong> phospholipase<br />

D in tomato fruits. Plant Physiol. Biochem., 41: 223–240.<br />

Ponting, C.P. <strong>and</strong> Kerr, I.D. 1996. A novel family <strong>of</strong> phospholipase D homologues that includes phospholipid<br />

synthases <strong>and</strong> putative endonucleases. Protein Sci., 5: 914–922.<br />

Qin, C. <strong>and</strong> Wang, X. 2002. The Arabidopsis phospholipase D family. Characterization <strong>of</strong> a calcium-independent<br />

<strong>and</strong> phosphatidylcholine-selective PLDζ 1 with distinct regulatory domains. Plant Physiol., 128: 1057–1068.<br />

Qin, W., Pappan, K., <strong>and</strong> Wang, X. 1997. Molecular heterogeneity <strong>of</strong> phospholipase D (PLD): cloning <strong>of</strong> PLD<br />

gamma <strong>and</strong> regulation <strong>of</strong> plant PLD alpha, beta <strong>and</strong> gamma by polyphosphoinositides <strong>and</strong> calcium. J. Biol.<br />

Chem., 272: 28267–28273.<br />

Ritchie, S. <strong>and</strong> Gilroy, S. 1998. Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase<br />

D activity. Proc. Natl. Acad. Sci. U.S.A., 95: 2697–2702.<br />

Rizo, J. <strong>and</strong> Südh<strong>of</strong>, T.C. 1998. C 2 -domains, structure <strong>and</strong> function <strong>of</strong> a universal Ca 2+ -binding domain. J. Biol.<br />

Chem., 273: 15879–15882.<br />

Roberts, D.M. <strong>and</strong> Tyerman, S.D. 2002. Voltage-dependent cation channels permeable to NH + 4 ,K+ , <strong>and</strong> Ca 2+ in<br />

the symbiosome membrane <strong>of</strong> the model legume Lotus japonicus. Plant Physiol., 128: 370–378.<br />

Rogers, S., Wells, R., <strong>and</strong> Rechsteiner, M. 1986. Amino acid sequences common to rapidly degraded proteins: the<br />

PEST hypothesis. Science, 234: 364–368.<br />

Rose, T.M., Schultz, E.R., Henik<strong>of</strong>f, J.G., Pietrokovski, S., McCallum, C.M., <strong>and</strong> Henik<strong>of</strong>f, S. 1998. Consensusdegenerate<br />

hybrid oligonucleotide primers for amplification <strong>of</strong> distantly related sequences. Nucl. Acids Res.,<br />

26: 1628–1635.<br />

Ryu, S.B., Karlson, B.H., Özgen, M., <strong>and</strong> Palta, J.P. 1997. Inhibition <strong>of</strong> phospholipase D by lysophosphatidylethanolamine,<br />

a lipid derived senescence retardant. Proc. Natl. Acad. Sci. U.S.A., 94: 12717–12721.<br />

Ryu, S.B. <strong>and</strong> Wang, X. 1996. Activation <strong>of</strong> phospholipase D <strong>and</strong> the possible mechanism <strong>of</strong> wound-induced lipid<br />

hydrolysis in wounded castor bean leaves. Biochim. Biophys. Acta, 1303: 243–250.<br />

Schwertner, H.A. <strong>and</strong> Biale, J.B. 1973. Lipid composition <strong>of</strong> plant mitochondria <strong>and</strong> <strong>of</strong> chloroplasts. J. Lipid Res.,<br />

14: 235–242.<br />

Simões, I., Mueller, E.-C., Otto, A., Bur, D., Cheung, A.Y., Faro, C., <strong>and</strong> Pires, E. 2005. Molecular analysis <strong>of</strong><br />

the interaction between cardosin A <strong>and</strong> phospholipase Dα. Identification <strong>of</strong> RGD/KGE sequences as binding<br />

motifs for C2 domains. FEBS J., 272: 5786–5798.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!