10.12.2015 Views

Postharvest Biology and Technology of Fruits, Vegetables, and Flowers

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

336 POSTHARVEST BIOLOGY & TECHNOLOGY OF FRUITS, VEGETABLES, & FLOWERS<br />

Igarashi, K. <strong>and</strong> Kashiwagi, K. 2006. Polyamine modulon in Escherichia coli: genes involved in the stimulation<br />

<strong>of</strong> cell growth by polyamines. J. Biochem. (Tokyo), 139: 11–16.<br />

Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., Shirano, Y., Kato, T., Hayashi, H.,<br />

Shibata, D., Tabata, S., Komeda, Y., <strong>and</strong> Takahashi, T. 2004. Spermidine synthase genes are essential for<br />

survival <strong>of</strong> Arabidopsis. Plant Physiol., 135: 1565–1573.<br />

Kashiwagi, K., Hosokawa, N., Furuchi, T., Kobayashi, H., Sasakawa, C., Yoshikawa, M., <strong>and</strong> Igarashi, K. 1990.<br />

Isolation <strong>of</strong> polyamine transport-deficient mutants <strong>of</strong> Escherichia coli <strong>and</strong> cloning <strong>of</strong> the genes for polyamine<br />

transport proteins. J. Biol. Chem., 265: 20893–20897.<br />

Kashiwagi, K., Shibuya, S., Tomitori, H., Kuraishi, A., <strong>and</strong> Igarashi, K. 1997. Excretion <strong>and</strong> uptake <strong>of</strong> putrescine<br />

by the PotE protein in Escherichia coli. J. Biol. Chem., 272: 6318–6323.<br />

Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., <strong>and</strong> Tachibana, S. 2004. Overexpression <strong>of</strong> spermidine<br />

synthase enhances tolerance to multiple environmental stresses <strong>and</strong> up-regulates the expression <strong>of</strong> various<br />

stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol., 45: 712–722.<br />

Katharina, B., Guillaume, R., Markus, W., Rüdiger, H., <strong>and</strong> Margret, S. 2007. The role <strong>of</strong> methionine recycling<br />

for ethylene synthesis in Arabidopsis. Plant J., 49: 238–249.<br />

Kaur-Sawhney, R., Flores, H.E., <strong>and</strong> Galston, A.W. 1981. Polyamine oxidase in oat leaves, a cell-wall localized<br />

enzyme. Plant Physiol., 68: 494–498.<br />

Kaur-sawhney, R., Shih, L.M., Cegielska, T., <strong>and</strong> Galston, A.W. 1982. Inhibition <strong>of</strong> protease activity by<br />

polyamines—relevance for control <strong>of</strong> leaf senescence. FEBS Lett., 145: 345–349.<br />

Kaur-Sawhney, R., Tiburcio, A.F., Altabella, T., <strong>and</strong> Galston, A.W. 2003. Polyamines in plants: an overview. J.<br />

Cell Mol. Biol., 2: 1–12.<br />

Keniry, M.A. 2003. A comparison <strong>of</strong> the association <strong>of</strong> spermine with duplex <strong>and</strong> quadruplex DNA by NMR.<br />

FEBS Lett., 542: 153–158.<br />

Khan, A.S. <strong>and</strong> Singh, Z. 2007. 1-MCP regulates ethylene biosynthesis <strong>and</strong> fruit s<strong>of</strong>tening during ripening <strong>of</strong><br />

“Tegan Blue” plum. <strong>Postharvest</strong> Biol. Technol., 43: 298–306.<br />

Kramer, G.F., Norman, H.A., Krizek, D.T., <strong>and</strong> Mirecki, R.M. 1991. Influence <strong>of</strong> UV-B radiation on polyamines,<br />

lipid peroxidation <strong>and</strong> membrane lipids in cucumber. Phytochemistry, 30: 2101–2108.<br />

Kuehn, G.D., Rodriguez-Garay, B., Bagga, S., <strong>and</strong> Phillips, G.C. 1990. Novel occurrence <strong>of</strong> uncommon polyamines<br />

in higher plants. Plant Physiol., 92: 88–96.<br />

Kumria, R. <strong>and</strong> Rajam, M.V. 2002. Alteration in polyamine titres during Agrobacterium-mediated transformation<br />

<strong>of</strong> indica rice with ornithine decarboxylase gene affects plant regeneration potential. Plant Sci., 162: 769–777.<br />

Kushad, M.M. 1998. Changes in polyamine levels in relationship to the double-sigmoidal growth curve <strong>of</strong> peaches.<br />

J. Am. Soc. Hort. Sci., 123: 950–955.<br />

Kushad, M.M. <strong>and</strong> Dumbr<strong>of</strong>f, E.B. 1991. Metabolic <strong>and</strong> physiological relationship between the polyamine <strong>and</strong><br />

ethylene biosynthetic pathways. In: Biochemistry <strong>and</strong> Physiology <strong>of</strong> Polyamines in Plants (eds, R.D. Slocum<br />

<strong>and</strong> H.E. Flores), CRC Press, Boca Raton, FL, pp. 77–92.<br />

Lahiri, K., Chattopadhyay, S., <strong>and</strong> Ghosh, B. 2004. Correlation <strong>of</strong> endogenous free polyamine levels with root<br />

nodule senescence in different genotypes in Vigna mungo L. J. Plant Physiol., 161: 563–571.<br />

Law, D.M., Davies, P.J., <strong>and</strong> Mutschler, M.A. 1991. Polyamine-induced prolongation <strong>of</strong> storage in tomato fruits.<br />

Plant Growth Regul., 10: 283–290.<br />

Lee, M.M., Lee, S.H., <strong>and</strong> Park, K.Y. 1997. Effects <strong>of</strong> spermine on ethylene biosynthesis in cut carnation (Dianthus<br />

caryophyllus L.) flowers during senescence. J. Plant Physiol., 151: 68–73.<br />

Legocka, J. <strong>and</strong> Zajchert, I. 1999. Role <strong>of</strong> spermidine in the stabilization <strong>of</strong> the apoprotein <strong>of</strong> thelight-harvesting<br />

chlorophyll a/b-protein complex <strong>of</strong> photosystem II during leaf senescence process. Acta Physiol. Plant., 21:<br />

127–132.<br />

Leiting, V.A. <strong>and</strong> Wicker, L. 1997. Inorganic cations <strong>and</strong> polyamines moderate pectinesterase activity. J. Food<br />

Sci., 62: 253–255.<br />

Lester, G.E. 2000. Polyamines <strong>and</strong> their cellular anti-senescence properties in honey dew muskmelon fruit. Plant<br />

Sci., 160: 105–112.<br />

Li, N., Parsons, B., Liu, D., <strong>and</strong> Mattoo, A.K. 1992. Accumulation <strong>of</strong> wound-inducible ACC synthase transcript<br />

in tomato fruit is inhibited by salicylic acid <strong>and</strong> polyamines. Plant Mol. Biol., 18: 477–487.<br />

Lindemose, S., Nielsen, P.E., <strong>and</strong> Mollegaard, N.E. 2005. Polyamines preferentially interact with bent adenine<br />

tracts in double-str<strong>and</strong>ed DNA. Nucleic Acids Res., 33: 1790–1803.<br />

Liu, J.H., Honda, C., <strong>and</strong> Moriguchi, T. 2006a. Involvement <strong>of</strong> polyamine in floral <strong>and</strong> fruit development. Jpn.<br />

Agric. Res. Q., 40: 51–58.<br />

Liu, J.H., Nada, K., Pang, X., Honda, C., Kitashiba, H., <strong>and</strong> Moriguchi, T. 2006b. Role <strong>of</strong> polyamines in peach<br />

fruit development <strong>and</strong> storage. Tree Physiol., 26: 791–798.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!