10.12.2015 Views

Postharvest Biology and Technology of Fruits, Vegetables, and Flowers

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

350 POSTHARVEST BIOLOGY & TECHNOLOGY OF FRUITS, VEGETABLES, & FLOWERS<br />

Mitochondria<br />

proline<br />

e −<br />

e −<br />

Inner<br />

membrane<br />

space<br />

PDH<br />

P-5-C<br />

Glutamate<br />

(Proline dehydrogenase)<br />

Alternative oxidative<br />

phosphorylation under<br />

oxidation stress with Indole<br />

phenolic antioxidants<br />

B.<br />

Tryptophan<br />

Inner<br />

membrane<br />

e −<br />

IAA<br />

Proline<br />

P-5-C<br />

Glutamate<br />

Cinnamate<br />

Mitochondrial<br />

matrix<br />

Phenolics<br />

2H +<br />

e −<br />

O2<br />

2H +<br />

2H +<br />

e −<br />

/ 2 O 2<br />

2H + H +<br />

pH gradient OH -<br />

H +<br />

electrochemical OH -<br />

H +<br />

OH -<br />

gradient<br />

H 2 O<br />

2H + ATPase<br />

3ATP<br />

2H +<br />

Reactions <strong>of</strong> phenolic<br />

Radical on the membrane<br />

-Signaling<br />

-Transport mobilization<br />

-C-transport stimulation<br />

-Transport inhibition, etc.<br />

− O<br />

Receptor<br />

Chloroplast/Cytosol<br />

NADP +<br />

NADPH<br />

NADP +<br />

Chorismate Shikimate<br />

Pathway<br />

Phenylalanine<br />

Proline<br />

(Replacing NADH)<br />

COO −<br />

Reactive<br />

oxygen<br />

NADPH<br />

Sugar<br />

phosphates for<br />

anabolic<br />

reactions<br />

Glucose<br />

Glucos-6-P<br />

G6PDH<br />

(Glucose-6-phosphate<br />

dehydrogenase)<br />

6-Phospho-glucose--lactone<br />

Erythrose-4-P<br />

Ribulos-5-P<br />

6-Phosphogluconate<br />

dehydrogenase<br />

Ribos-5-P<br />

PRP<br />

Purine<br />

Phenylpropanoid<br />

pathway Adenine<br />

DNA/RNA, ATP<br />

Guanine<br />

Phenolic<br />

Antioxidant<br />

Cytokinin<br />

GST/PO/SOD<br />

with phenolics initiate<br />

antioxidant response <strong>and</strong><br />

scavenge free radicals with<br />

NADPH from proline-linked<br />

pentose phosphate pathway<br />

Organelle<br />

nuclear<br />

vacuole <strong>and</strong><br />

cytosolic reactions<br />

Phenolic radical reactions on<br />

the membrane <strong>and</strong> cell wall can<br />

involve peroxidase-induced<br />

polymerization<br />

Phenolic<br />

radical<br />

(Phosphoribosyl<br />

pyrophosphate)<br />

H + induced<br />

prolin-linked<br />

pentose<br />

phosphate<br />

pathway<br />

Proton/hydride ions<br />

(hyperacidification)<br />

H + H +<br />

H +<br />

H + H +<br />

H +<br />

Fig. 16.6 Proline-linked pentose phosphate pathways for phenolic synthesis <strong>and</strong> efficient antioxidant response<br />

(Shetty <strong>and</strong> Wahlqvist, 2004).<br />

P5C <strong>and</strong> linking the electron transport chain (ETC) in the mitochondria with oxygen as<br />

the terminal electron acceptor. P5C is then hydrolyzed nonenzymatically <strong>and</strong> oxidized to<br />

glutamate by the NAD-dependent P5C dehydrogenase. Following oxidative deamination by<br />

glutamate dehydrogenase, it flows into the TCA cycle through α-ketoglutarate to generate<br />

NADH for oxidative phosphorylation or recycled back into the cytosol (Hare <strong>and</strong> Cress,<br />

1997; Shetty <strong>and</strong> Wahlqvist, 2004; Krishnan <strong>and</strong> Becker, 2006; Fig. 16.6).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!