10.12.2015 Views

Postharvest Biology and Technology of Fruits, Vegetables, and Flowers

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

256 POSTHARVEST BIOLOGY & TECHNOLOGY OF FRUITS, VEGETABLES, & FLOWERS<br />

0–17% to 66–75% when heated to 46 ◦ C for 1 1 / 2 h (Esquerra <strong>and</strong> Lizada, 1990). Internal<br />

cavitation has also been observed in “Hayward” kiwifruit heated at 40 ◦ C in controlled<br />

atmosphere (0.4% O 2 + 20% CO 2 ) for 10 h when the fruits were not hydrocooled after<br />

treatment (Lay-Yee <strong>and</strong> Whiting, 1996). Internal cavitation can also develop in mango fruit<br />

from exposure to high temperatures in the field (Gunjate et al., 1982) or from exposure<br />

to modified atmospheres, especially at ambient temperatures in the tropics (Gautam <strong>and</strong><br />

Lizada, 1984).<br />

11.8 Conclusions<br />

Application <strong>of</strong> heat treatments to plant materials as a means <strong>of</strong> controlling pests or pathogens<br />

provides a nonchemical method <strong>of</strong> control. However, the tolerance to such treatments must<br />

be carefully evaluated. Heat treatment can have beneficial effects beyond pest control such<br />

as reducing susceptibility to chilling injury <strong>and</strong> reducing the rate <strong>of</strong> ripening. Heat damage<br />

may be immediate or may develop after a period <strong>of</strong> storage. Tolerance to heat exposure is<br />

influenced by species, cultivar, harvest maturity, growing conditions, <strong>and</strong> h<strong>and</strong>ling between<br />

harvest <strong>and</strong> treatment. In addition, the method used to apply heat can greatly influence<br />

product tolerance. In some cases, special treatments can be applied to increase product<br />

tolerance to a heat treatment, but one must also consider if this will influence treatment<br />

efficacy against insect pests or pathogens.<br />

References<br />

Abreu, M., Beirao-da-Costa, S., Concalves, E., Bierao-da-Costa, M.L., <strong>and</strong> Moldao-Marins, M. 2003. Use <strong>of</strong> mild<br />

heat pre-treatments for quality retention <strong>of</strong> fresh-cut “Rocha” pear. <strong>Postharvest</strong> Biol. Technol., 30: 153–160.<br />

An, J.F. <strong>and</strong> Paull, R.E. 1990. Storage temperature <strong>and</strong> ethylene influence on ripening <strong>of</strong> papaya fruit. J. Am. Soc.<br />

Hort. Sci., 115: 949–955.<br />

Antunes, M.D.C. <strong>and</strong> Sfakiotakis, E.M. 2000. Effect <strong>of</strong> high temperature stress on ethylene biosynthesis, respiration<br />

<strong>and</strong> ripening <strong>of</strong> “Hayward” kiwifruit. <strong>Postharvest</strong> Biol. Technol., 20: 251–258.<br />

Bai, J., Baldwin, E., Fortuny, R., Mattheis, J., Stanley, R., Perera, C., <strong>and</strong> Brecht, J. 2004. Effect <strong>of</strong> pretreatment<br />

<strong>of</strong> intact “Gala” apple with ethanol vapor, heat, or 1-methylcuclopropene on quality <strong>and</strong> shelf life <strong>of</strong> fresh-cut<br />

slices. J. Am. Soc. Hort. Sci., 129: 583–593.<br />

Barrancos, S., Beirao-da-Costa, M., Moldao-Marins, M., Abreu, M., Concalves, E., <strong>and</strong> Beirao-da-Costa, S. 2003.<br />

The effect <strong>of</strong> heat pre-treatment on quality <strong>and</strong> shelf lfie <strong>of</strong> fresh-cut apples. Acta Hort., 599: 595–601.<br />

Burmeister, D., Ball, S., Green, S., <strong>and</strong> Woolf, A.B. 1997. Interaction <strong>of</strong> hot water treatments <strong>and</strong> controlled<br />

atmosphere storage on quality <strong>of</strong> “Fuyu” persimmons. <strong>Postharvest</strong> Biol. Technol., 12: 71–78.<br />

Cantwell, M.I., Hong, G., <strong>and</strong> Suslow, T.V. 2001. Heat treatments control extension growth <strong>and</strong> enhance microbial<br />

disinfection <strong>of</strong> minimally processed green onions. HortScience, 36: 732–737.<br />

Cantwell, M.I., Kang, J., <strong>and</strong> Hong, G. 2003. Heat treatments control sprouting <strong>and</strong> rooting <strong>of</strong> garlic cloves.<br />

<strong>Postharvest</strong> Biol. Technol., 30: 57–65.<br />

Chan, H.T. <strong>and</strong> Linse, E. 1989. Conditioning cucumbers for quarantine treatments. HortScience, 24: 985–989.<br />

Civello, P.M., Martinez, G.A., Chaves, A.R., <strong>and</strong> Anan, M.C. 1997. Heat treatments delay ripening <strong>and</strong> postharvest<br />

decay <strong>of</strong> strawberry fruit. J. Agric. Food Chem., 45: 4589–4596.<br />

Delaquis, P., Fukumoto, L., Toivonen, P., <strong>and</strong> Cliff, M. 2004. Implications <strong>of</strong> water chlorination <strong>and</strong> temperature<br />

for the microbiological <strong>and</strong> sensory properties <strong>of</strong> fresh-cut iceberg lettuce. <strong>Postharvest</strong> Biol. Technol., 31:<br />

81–91.<br />

Diaz-Perez, J.C., Mejia, A., Bautista, S., Zaveleta, R., Villanueva, R., <strong>and</strong> Gomez, R.L. 2001. Response <strong>of</strong> sapote<br />

mamey [Pouteria sapota (Jacq.) H.E. Moore & Stearn] fruit to hot water treatments. <strong>Postharvest</strong> Biol. Technol.,<br />

22: 159–167.<br />

Esquerra, E.B. <strong>and</strong> Lizada, M.C.C. 1990. The postharvest behavior <strong>and</strong> quality <strong>of</strong> “Carabao” mangoes subjected<br />

to vapor heat treatment. ASEAN Food J., 5: 6–11.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!