12.09.2013 Views

Lotka-Volterramodellen - Home Page of Lars Holm Jensen

Lotka-Volterramodellen - Home Page of Lars Holm Jensen

Lotka-Volterramodellen - Home Page of Lars Holm Jensen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Eftersom ε(h) = g(a + h) − g(a) − Dg(a)(h) og b = g(a), f˚as at<br />

Df(b)(g(a + h) − g(a)) + δ(k) =<br />

Df(g(a))(Dg(a)(h) + ε(h)) + δ(k)<br />

Udtrykket Df(g(a)) ganges ind i parentesen:<br />

Df(g(a))(Dg(a)(h) + ε(h)) + δ(k) =<br />

Df(g(a))(Dg(a)(h)) + Df(g(a))(ε(h)) + δ(k)<br />

Da T = Df g(a) Dg(a) og b = g(a), f˚as at<br />

Det følger heraf, at<br />

Df(g(a))(Dg(a)(h) + Df(g(a))(ε(h)) + δ(k) =<br />

T (h) + Df(b)(ε(h)) + δ(k)<br />

f(g(a + h)) − f(g(a)) − T (h) = Df(b)(ε(h)) + δ(k)<br />

For at gøre beviset færdigt sættes<br />

Nu skal det blot vises, at<br />

T1(h) = Df(b)(ε(h)) T2(h) = δ(k)<br />

Tj(h)<br />

||h||<br />

Da Df(b) er en lineær operator, gælder at<br />

Det vides, at ε(h)<br />

||h||<br />

T1(h)<br />

||h||<br />

→ 0, n˚ar h → 0 for j = 1, 2.<br />

= Df(b)(ε(h))<br />

||h||<br />

= Df(b)<br />

<br />

ε(h)<br />

||h||<br />

→ 0 n˚ar h → 0. Enhver lineær operator afbilleder 0 over i<br />

0, jf. proposition 3.1 i [Axl97]. Eftersom der ifølge [Che] gælder, at Df(b) er<br />

kontinuert i 0, f˚as at<br />

<br />

ε(h)<br />

Df(b) → 0, n˚ar h → 0<br />

||h||<br />

For at bevise at T2(h)<br />

||h||<br />

Derfor bestemmes normen af k:<br />

||k||<br />

→ 0, n˚ar h → 0, skal det først vises, at ||h|| er begrænset.<br />

||k|| = ||g(a + h) − g(a)||<br />

Da ε(h) = g(a + h) − g(a) − Dg(a)(h), f˚as at<br />

||k|| = ||Dg(a)(h) + ε(h)||<br />

Trekantsuligheden anvendes p˚a dette udtryk:<br />

||Dg(a)(h) + ε(h)|| ≤ ||Dg(a)(h)|| + ||ε(h)||

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!