15.01.2015 Views

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.4. RESULTS<br />

1z:100x:100y 1z:100x:5y 1z:5x:5y<br />

10<br />

10<br />

10<br />

5<br />

5<br />

5<br />

S<strong>of</strong>t<br />

∆ f p<br />

0<br />

−5<br />

∆ f p<br />

0<br />

−5<br />

∆ f p<br />

0<br />

−5<br />

−10<br />

−10<br />

−10<br />

−15<br />

1 2 3 4 5 6<br />

Timestep<br />

−15<br />

1 2 3 4 5 6<br />

Timestep<br />

−15<br />

1 2 3 4 5 6<br />

Timestep<br />

10<br />

10<br />

10<br />

5<br />

5<br />

5<br />

Medium<br />

∆ f p<br />

0<br />

−5<br />

∆ f p<br />

0<br />

−5<br />

∆ f p<br />

0<br />

−5<br />

−10<br />

−10<br />

−10<br />

−15<br />

1 2 3 4 5 6<br />

Timestep<br />

−15<br />

1 2 3 4 5 6<br />

Timestep<br />

−15<br />

1 2 3 4 5 6<br />

Timestep<br />

10<br />

10<br />

10<br />

5<br />

5<br />

5<br />

Stiff<br />

∆ f p<br />

0<br />

−5<br />

∆ f p<br />

0<br />

−5<br />

∆ f p<br />

0<br />

−5<br />

−10<br />

−10<br />

−10<br />

−15<br />

1 2 3 4 5 6<br />

Timestep<br />

−15<br />

1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Timestep<br />

−15<br />

1 2 3 4 5 6<br />

Timestep<br />

Figure 5.13: Percentage change in fracture potential during injection into the simple reservoirs.<br />

I plot the fracture potentials for all the cells examined - in the centre <strong>of</strong> the reservoir (black), at<br />

the edge <strong>of</strong> the reservoir (red), in the corner <strong>of</strong> the reservoir (blue), in the overburden (green) <strong>and</strong><br />

in the sideburden (magenta). Increases in fracture potential are seen for the smaller reservoirs<br />

(1z:100x:5y <strong>and</strong> 1z:5x:5y). The extensive reservoir (1z:100x:100y) models do not see increases in<br />

fracture potential either in the reservoir or the overburden.<br />

making the fracture potential<br />

f p =<br />

q<br />

2(χ cos ϕ f + p sin ϕ f ) . (5.22)<br />

In Figure 5.13 I plot the percentage change in fracture potential through time for all <strong>of</strong> the simple<br />

reservoirs.<br />

To compute the results I use generic values for χ <strong>and</strong> ϕ f , with χ=5MPa <strong>and</strong> ϕ f =40 ◦<br />

(m=0.84). Cases where f p increase represent cases where we might expect failure. I note that for<br />

the extensive reservoirs the values <strong>of</strong> f p do not change in the overburden, because the reservoirs are<br />

too extensive for the overburden to be supported, <strong>and</strong> so stress is not transferred. The values <strong>of</strong> f p<br />

in the reservoir decrease because, with a low value <strong>of</strong> K 0 , the Mohr circles will shrink, meaning that<br />

differential stresses are lower. Therefore I infer that the risk <strong>of</strong> shear failure for these cases is not only<br />

not increasing, but is in fact reducing.<br />

In contrast, the smaller reservoirs show f p values increasing during injection. For the s<strong>of</strong>ter<br />

reservoir it is in the overburden that the fracture potential is increasing, because stresses are transferred<br />

to the overburden, increasing the vertical stress while the horizontal stress is essentially unchanged,<br />

leading to a higher differential stress. For the stiffer reservoir it is inside the reservoir that f p increases<br />

99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!