15.01.2015 Views

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

20<br />

10<br />

5<br />

5<br />

1<br />

20<br />

30<br />

40<br />

80<br />

100<br />

60<br />

40<br />

1<br />

20<br />

80<br />

3.3. SYNTHETIC TESTING OF INVERSION METHOD<br />

330°<br />

0°<br />

30°<br />

Anisotropy [%]<br />

5<br />

300°<br />

60°<br />

4<br />

3<br />

270°<br />

90°<br />

2<br />

240°<br />

120°<br />

1<br />

210°<br />

180°<br />

150°<br />

0<br />

(a)<br />

0.2<br />

0.2<br />

30<br />

100<br />

γ<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

200<br />

200<br />

100<br />

60<br />

80<br />

200<br />

δ<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

100<br />

60<br />

80 80<br />

40<br />

30<br />

20<br />

10<br />

5<br />

10<br />

5<br />

20<br />

10<br />

30<br />

40<br />

60<br />

80<br />

100<br />

0.06<br />

0.04<br />

0.02<br />

100<br />

100<br />

80<br />

60<br />

40<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

Fracture Strike (α)<br />

30<br />

10<br />

5<br />

20<br />

20<br />

30<br />

40<br />

40<br />

60<br />

100<br />

80<br />

0.06<br />

0.04<br />

0.02<br />

100<br />

100<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

Fracture Strike (α)<br />

20<br />

30<br />

40<br />

60<br />

(b)<br />

0.2<br />

(c)<br />

0.18<br />

0.16<br />

80<br />

40<br />

30<br />

40<br />

80<br />

100<br />

30<br />

20<br />

200 200<br />

0.14<br />

0.12<br />

60<br />

10<br />

60<br />

δ<br />

0.1<br />

0.08<br />

40<br />

30<br />

0.06<br />

10<br />

0.04<br />

60<br />

60<br />

0.02<br />

100<br />

80<br />

20<br />

0<br />

0 0.05 0.1 0.15 0.2<br />

γ<br />

(d)<br />

Figure 3.5: Inversion results for the first synthetic example, with subhorizontal arrivals. In (a) I<br />

plot an upper hemisphere projection <strong>of</strong> the synthetically generated dataset (coloured ticks with<br />

green outline). The position <strong>of</strong> the ticks mark the arrival azimuths <strong>and</strong> inclinations <strong>of</strong> the S-<br />

waves. The orientation <strong>of</strong> the ticks mark ψ, while the length <strong>of</strong> the ticks, <strong>and</strong> the colour, give<br />

δV S.<br />

Also plotted, with thin ticks <strong>and</strong> coloured contours, is the modelled splitting using the<br />

best fit model parameters. Panels (b - d) show the RMS misfit between data <strong>and</strong> model, as a<br />

function <strong>of</strong> fracture strike (α), γ <strong>and</strong> δ. The blue crosses mark the initial values used to generate<br />

the synthetic data (γ=0.04, δ=0.1, α=120 ◦ <strong>and</strong> ξ=0.04) <strong>and</strong> the red lines indicate the inversion<br />

results. The misfit contours are normalised such that 1 is the 90% confidence limit.The ellipticity<br />

<strong>of</strong> the 90% confidence interval indicates how well constrained the parameters are in relation to<br />

each other. In this case, γ <strong>and</strong> α are well constrained, 39 while δ is not.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!