15.01.2015 Views

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 4. A COMPARISON OF MICROSEISMIC MONITORING OF FRACTURE STIMULATION DUE TO WATER<br />

VERSUS CO 2 INJECTION<br />

3<br />

3<br />

0.25<br />

2.5<br />

0.25<br />

2.5<br />

(Signal:Noise) −1<br />

0.2<br />

0.15<br />

0.1<br />

2<br />

1.5<br />

1<br />

(Signal:Noise) −1<br />

0.2<br />

0.15<br />

0.1<br />

2<br />

1.5<br />

1<br />

0.05<br />

0.5<br />

0.05<br />

0.5<br />

0<br />

0 5 10 15 20<br />

θ S<br />

−ψ<br />

25 30 35<br />

0<br />

0<br />

0 5 10 15 20<br />

θ S<br />

−ψ<br />

25 30 35<br />

0<br />

(a)<br />

(b)<br />

3<br />

3<br />

0.25<br />

2.5<br />

0.25<br />

2.5<br />

(Signal:Noise) −1<br />

0.2<br />

0.15<br />

0.1<br />

2<br />

1.5<br />

1<br />

(Signal:Noise) −1<br />

0.2<br />

0.15<br />

0.1<br />

2<br />

1.5<br />

1<br />

0.05<br />

0.5<br />

0.05<br />

0.5<br />

0<br />

0 5 10 15 20<br />

θ −ψ S<br />

25 30 35<br />

0<br />

0<br />

0 5 10 15 20<br />

θ −ψ S<br />

25 30 35<br />

0<br />

(c)<br />

(d)<br />

Figure 4.18: These plots show the difference between initial <strong>and</strong> measured δt from the synthetically<br />

generated seismograms (blue colours indicate that the time-lag has been accurately measured) as<br />

a function <strong>of</strong> signal-to-noise ratio <strong>and</strong> the difference between ψ <strong>and</strong> θ S . (a) shows the accuracy<br />

when δt N =0.075, (b) shows δt N =0.15, (c) shows δt N =0.30, <strong>and</strong> (d) shows δt N =0.45.<br />

4.6 Interpretation <strong>of</strong> shear wave splitting results<br />

4.6.1 Synthetic tests<br />

As in Chapter 3 I use synthetic forward modelling to determine what to expect with the range <strong>of</strong><br />

SWS arrivals available. The source-receiver geometry for this case is limited to subhorizontal arrivals<br />

with a 70 ◦ range in azimuth (Figure 4.21a). Given such a limited range <strong>of</strong> arrivals, can we expect<br />

to image fractures, <strong>and</strong> if so, to identify their strike <strong>and</strong> density Note that as we are dealing with<br />

subhorizontal arrivals, variation in δ does not significantly affect the inversion. Hence for the following<br />

examples I do not plot δ, plotting the misfit as a function <strong>of</strong> γ, α <strong>and</strong> ξ at the best fit value <strong>of</strong> δ. The<br />

first model I consider has no fractures, only a VTI fabric with γ=0.04 (see Chapter 3). The results<br />

are shown in Figure 4.21; the inversion accurately identifies the lack <strong>of</strong> fractures <strong>and</strong> determines γ<br />

72

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!