15.01.2015 Views

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

Microseismic Monitoring and Geomechanical Modelling of CO2 - bris

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6.3. A MICRO-STRUCTURAL MODEL FOR NONLINEAR ELASTICITY<br />

<strong>and</strong> α mm is the trace <strong>of</strong> α (α mm = α 11 + α 22 + α 33 ). By rearranging equations 6.18 <strong>and</strong> 6.19 I can<br />

rewrite β in terms <strong>of</strong> α <strong>and</strong> the ratio B N /B T , such that<br />

β 1111 = 1 ( )<br />

BN<br />

− 1 α mm . (6.20)<br />

3 B T<br />

Substitution <strong>of</strong> this relationship into equations 6.11 <strong>and</strong> 6.12 yields the overall stiffness as a function<br />

<strong>of</strong> both the second <strong>and</strong> fourth order crack density tensors, by way <strong>of</strong> the ratio B N /B T ,<br />

[<br />

] ⎫<br />

C ii = (Sjk r + f 9 αm ) 2 − (Sjj r + α jj + f 3 αm )(Skk r + α kk + f 3 αm ) /D ⎬<br />

[<br />

]<br />

C ij = (Sij r + f 9 αm )(Skk r + α kk + f 3 αm ) − (Sik r + f 9 αm )(Sjk r + f 9 αm ) /D ⎭ i ≠ j ≠ k ≤ 3<br />

C ii = (S r ii + α jj + α kk + 4f 9 αm ) −1 i ≠ j ≠ k ≥ 4 (6.21)<br />

where<br />

D = (S r 11 + α 11 + f 3 αm )(S r 23 + f 9 αm ) 2 + (S r 22 + α 22 + f 3 αm )(S r 13 + f 9 αm ) 2<br />

+(S r 33 + α 33 + f 3 αm )(S r 12 + f 9 αm ) 2<br />

−2(S r 12 + f 9 αm )(S r 13 + f 9 αm )(S r 23 + f 9 αm )<br />

−(S r 11 + α 11 + f 3 αm )(S r 22 + α 22 + f 3 αm )(S r 33 + α 33 + f 3 αm ) , (6.22)<br />

f =<br />

( )<br />

BN<br />

− 1 . (6.23)<br />

B T<br />

Having defined a set <strong>of</strong> equations for the overall stiffness with the fourth order crack density tensor<br />

written in terms <strong>of</strong> the second order crack density tensor <strong>and</strong> B N /B T<br />

ratio, the inversion for crack<br />

density <strong>and</strong> B N /B T can then be performed using an iterative Newton-Raphson approach with model<br />

update:<br />

The vector model misfit is evaluated<br />

δb l = C obs<br />

l<br />

where the matrix Jacobian<br />

is inverted to evaluate the vector model update<br />

α ii = α ii + δm i , i = 1, 3. (6.24)<br />

− C model<br />

l l = 11, 22, 33, 44, 55, 66, 12, 13, 23 , (6.25)<br />

J il = ∂Cmodel l<br />

(6.26)<br />

∂α i<br />

δm i = J −1<br />

il<br />

δb l . (6.27)<br />

The matrix Jacobian <strong>of</strong> derivatives with respect to the second order crack density tensor α ii is<br />

evaluated using the following set <strong>of</strong> equations below. The partial derivatives <strong>of</strong> the denominator term<br />

113

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!