14.02.2013 Views

Grassmann Algebra

Grassmann Algebra

Grassmann Algebra

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TheRegressiveProduct.nb 28<br />

Similarly for Α2 we have the same formula, except that w replaces v.<br />

�Ξ � Ψ���w � x � y � z� � �Ξ � w � x � y � z��Ψ��Ψ � w � x � y � z��Ξ<br />

Again applying this to each of the terms of Α 2 gives:<br />

Α2 � �v � w � x � y � z��w � �v � w � x � y � z��x �<br />

�v � w � x � y � z��y � �v � w � x � y � z��z � w � x � y � z<br />

Hence the factorization is congruent to:<br />

Α1 � Α2 � �v � z���w � x � y � z�<br />

Verification by expansion of this product shows that this is indeed the factorization required.<br />

� Factorizing elements expressed in terms of basis elements<br />

We now take the special case where the element to be factorized is expressed in terms of basis<br />

elements. This will enable us to develop formulae from which we can write down the<br />

factorization of an element (almost) by inspection.<br />

The development is most clearly apparent from a specific example, but one that is general<br />

enough to cover the general concept. Consider a 3-element in a 5-space, where we suppose the<br />

coefficients to be such as to ensure the simplicity of the element.<br />

Α 3 � a1 e1 � e2 � e3 � a2 e1 � e2 � e4 � a3 e1 � e2 � e5<br />

�a4 e1 � e3 � e4 � a5 e1 � e3 � e5 � a6 e1 � e4 � e5<br />

�a7 e2 � e3 � e4 � a8 e2 � e3 � e5 � a9 e2 � e4 � e5<br />

�a10 e3 � e4 � e5<br />

Choose Β1 � e1 , Β2 � e2 , Β3 � e3 , Β � e4 � e5 , then we can write each of the factors<br />

2<br />

Βi � Β 2<br />

as a cobasis element.<br />

Β1 � Β 2<br />

Β2 � Β 2<br />

Β3 � Β 2<br />

� e1 � e4 � e5 � e2 � e3<br />

�������������<br />

� e2 � e4 � e5 ��e1 � e3<br />

�������������<br />

� e3 � e4 � e5 � e1 � e2<br />

�������������<br />

Consider the cobasis element e2 � e3 ������������� , and a typical term of Α 3 � e2 � e3<br />

������������� , which we write as<br />

�a ei � ej � ek��e2 � e3 ������������� . The Common Factor Theorem tells us that this product is zero if<br />

ei � ej � ek does not contain e2 � e3 . We can thus simplify the product Α � e2 � e3<br />

3 ������������� by<br />

dropping out the terms of Α 3 which do not contain e2 � e3 . Thus:<br />

Α � e2 � e3<br />

3 ������������� � �a1 e1 � e2 � e3 � a7 e2 � e3 � e4 � a8 e2 � e3 � e5��e2 � e3 �������������<br />

Furthermore, the Common Factor Theorem applied to a typical term �e2 � e3 � ei��e2 � e3 �������������<br />

occur yields a 1-element congruent to the<br />

of the expansion in which both e2 � e3 and e2 � e3 �������������<br />

2001 4 5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!