14.02.2013 Views

Grassmann Algebra

Grassmann Algebra

Grassmann Algebra

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TheComplement.nb 31<br />

The vector z is the position vector of any point on the line defined by the bound vector P<br />

����� . A<br />

particular point of interest is the point on the line closest to the point P or the origin. The<br />

position vector z would then be a vector at right angles to the direction of the line. Thus we can<br />

write e1 � e2 as:<br />

e1 � e2 �� �ae1 � be2���be1 � ae2�<br />

�������������������������������� ��������������������������������<br />

a2 � b2 The final expression for the complement of the point P � � � ae1 � be2 can then be written<br />

as a bound vector in a direction perpendicular to the position vector of P through a point P � .<br />

�����<br />

P �<br />

����<br />

�<br />

�<br />

�ae1 � be2�<br />

������������������������������<br />

a2 � b2 ���<br />

��be1 � ae2� � P<br />

�<br />

� ��be1 � ae2�<br />

Graphic of P, P � , their position vectors, the line joining them, and the line and bound vector<br />

perpendicular to this line through P � .<br />

The point P � is called the inverse point to P. Inverse points are situated on the same line<br />

through the origin, and on opposite sides of it. The product of their distances from the origin is<br />

unity.<br />

� The Euclidean complement in a vector 3-space<br />

Now we come to the classical 3-dimensional vector space which is the usual geometric<br />

interpretation of a 3-dimensional linear space. We start our explorations by generating a palette<br />

of basis elements and their complements.<br />

�3; ComplementPalette<br />

� BASIS COMPLEMENT<br />

�<br />

0<br />

1 e1 � e2 � e3<br />

� l<br />

� l<br />

� l<br />

� 2<br />

� 2<br />

e1<br />

e2<br />

e3<br />

e1 � e2<br />

e1 � e3<br />

e2 � e3<br />

��e1 � e3�<br />

e1 � e2<br />

e3<br />

�e2<br />

�<br />

2<br />

e2 � e3 e1<br />

�<br />

3<br />

e1 � e2 � e3 1<br />

First, we consider a vector x and take its complement.<br />

�����<br />

x � ae1<br />

����� � be2<br />

����� � ce3<br />

����� � ae2 � e3 � be1 � e3 � ce1 � e2<br />

The bivector x<br />

����� is thus a sum of components, each in one of the coordinate bivectors. We have<br />

already shown in Chapter 2: The Exterior Product that a bivector in a 3-space is simple, and<br />

2001 4 5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!