14.02.2013 Views

Grassmann Algebra

Grassmann Algebra

Grassmann Algebra

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GeometricInterpretations.nb 33<br />

P1 � � � u1 e1 � u1 2 �e2 � u1 3 �e3;<br />

P2 � � � u2 e1 � u2 2 �e2 � u2 3 �e3;<br />

P3 � � � u3 e1 � u3 2 �e2 � u3 3 �e3;<br />

The osculating planes at these three points are:<br />

�1 � � � e1 � e2 � 3u1 � � e1 � e3 � 3u1 2 � � e2 � e3 � u1 3 e1 � e2 � e3;<br />

�2 � � � e1 � e2 � 3u2 � � e1 � e3 � 3u2 2 � � e2 � e3 � u2 3 e1 � e2 � e3;<br />

�3 � � � e1 � e2 � 3u3 � � e1 � e3 � 3u3 2 � � e2 � e3 � u3 3 e1 � e2 � e3;<br />

The point of intersection of these three planes may be obtained by calculating their regressive<br />

product.<br />

���1 � �2 � �3�<br />

� � e1 � e2 � e3 � � � e1 � e2 � e3 ���9 � �u1 � u2� �u1 � u3� �u2 � u3� �<br />

3e1 �u1 � u2� �u1 � u3� ��u1 � u2 � u3��u2 � u3� �<br />

9e3 u1 �u1 � u2� u2 �u1 � u3� �u2 � u3� u3 �<br />

3e2 �u1 � u2� �u1 � u3� �u2 � u3� ��u2 u3 � u1 �u2 � u3���<br />

This expression is congruent to the point of intersection which we write more simply as:<br />

Q �<br />

� � 1 ���� ��u1 � u2 � u3��e1 �<br />

3 1<br />

���� ��u1 u2 � u2 u3 � u3 u1��e2 � �u1 u2 u3��e3;<br />

3<br />

Finally, to show that this point of intersection Q is coplanar with the points P1 , P2 , and P3 , we<br />

compute their exterior product.<br />

��P1 � P2 � P3 � Q�<br />

0<br />

This proves the original assertion.<br />

2001 4 5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!