14.02.2013 Views

Grassmann Algebra

Grassmann Algebra

Grassmann Algebra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TheInteriorProduct.nb 42<br />

� The angle between two bivectors<br />

Suppose we have two bivectors x1 � x2 and x3 � x4 .<br />

Diagram of three vectors showing the angles between them, and the angle between the<br />

bivector and the vector.<br />

In a 3-space we can find the vector complements of the bivectors, and then find the angle<br />

between these vectors. This is equivalent to the cross product formulation. Let A be the cosine<br />

of the angle between the vectors, then:<br />

Cos�Θ� � �x1<br />

�������������<br />

� x2�<br />

����<br />

�������������<br />

�x3 � x4�<br />

��������������������������������<br />

������������� ���������������<br />

�x1 �<br />

������������� �<br />

x2���x3<br />

� x4�<br />

�x1 � x2� ���� �x3 � x4�<br />

�������������������������������� ���������������<br />

�x1 � x2���x3 � x4�<br />

But from formulae 6.25 and 6.46 we can remove the complement operations to get the simpler<br />

expression:<br />

Cos�� � �x1 � x2� ���� �x3 � x4�<br />

�������������������������������� ���������������<br />

�x1 � x2���x3 � x4�<br />

6.115<br />

Note that, in contradistinction to the 3-space formulation using cross products, this formulation<br />

is valid in a space of any number of dimensions.<br />

An actual calculation is most readably expressed by expanding each of the terms separately. We<br />

can either represent the xi in terms of basis elements or deal with them directly. A direct<br />

expansion, valid for any metric is:<br />

ToScalarProducts��x1 � x2� ���� �x3 � x4��<br />

��x1 � x4� �x2 � x3� � �x1 � x3� �x2 � x4�<br />

Measure�x1 � x2� Measure�x3 � x4�<br />

���������������������������������������������������������������������������<br />

��x1 � x2� 2 � �x1 � x1� �x2 � x2� ���������������������������������������������������������������������������<br />

��x3 � x4� 2 � �x3 � x3� �x4 � x4�<br />

� The volume of a parallelepiped<br />

We can calculate the volume of a parallelepiped as the measure of the trivector whose vectors<br />

make up the sides of the parallelepiped. <strong>Grassmann</strong><strong>Algebra</strong> provides the function Measure for<br />

expressing the volume in terms of scalar products:<br />

2001 4 5<br />

V � Measure�Α1 � Α2 � Α3�<br />

�<br />

���Α1 � Α3�2 �Α2 � Α2� �<br />

2 �Α1 � Α2� �Α1 � Α3� �Α2 � Α3� � �Α1 � Α1� �Α2 � Α3� 2 �<br />

�Α1 � Α2�2 �Α3 � Α3� � �Α1 � Α1� �Α2 � Α2� �Α3 � Α3��

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!