28.12.2013 Views

preface to fifteenth edition

preface to fifteenth edition

preface to fifteenth edition

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.116 SECTION 2<br />

x2 x3 x4 x5<br />

ln(1 x) x ··· (1 x 1)<br />

2 3 4 5<br />

2 3 4 5<br />

x x x x<br />

ln(1 x) x ··· (1 x 1)<br />

2 3 4 5<br />

<br />

x 1 1 1 1 1<br />

x 1 x 3x3 5x5 7x7<br />

<br />

x 1 1 x 1 3 1 x 1 5<br />

x 1 3x 1 5x 1 <br />

x 1 x 3 1 x 5<br />

ln(a x) ln a 2 ··· <br />

3 5 7<br />

1 x x x x<br />

ln 2 x ··· (1 x 1)<br />

1 x 3 5 7<br />

ln 2 ··· (x 1or 1 x)<br />

ln x 2 ··· (0 x )<br />

2a x 3 2a x 5 2a x<br />

(0 a , a x )<br />

Series for the Trigonometric Functions. In the following formulas, all angles must be expressed<br />

in radians. If D the number of degrees in the angle, and x its radian measure, then x <br />

0.017453D.<br />

3 5 7<br />

x x x<br />

sin x x ··· ( x )<br />

3! 5! 7!<br />

x2 x4 x6 x8<br />

cos x 1 ··· ( x )<br />

2! 4! 6! 8!<br />

3 5 7 9<br />

x 2x 17x 62x <br />

tan x x ··· x <br />

3 15 315 2835 2 2<br />

1 x x3 2x5 x7<br />

cot x ··· ( x )<br />

x 3 45 945 4725<br />

3 5 7<br />

y 3y 5y<br />

sin1<br />

y y ··· (1 y 1)<br />

6 40 112<br />

3 5 7<br />

y y y<br />

tan1<br />

y y ··· (1 y 1)<br />

3 5 7<br />

1 1 1 1 1<br />

1<br />

cos y ⁄2 sin y cot y ⁄2 tan y<br />

Reversing a Series. If<br />

2 3 4 5<br />

then<br />

2 2<br />

y x bx cx dx ex ··· , x y by (2b <br />

3 3 4 4 2 2 5<br />

c)y (5b 5bc d)y (14b 21b c 6bd 3c e)y ··· , provided the latter series<br />

is convergent.<br />

Fourier’s Series. Let f(x) be a function which is finite in the interval from x c <strong>to</strong> x <br />

c and whose graph has finite arc length in that interval.* Then, for any value of x between c<br />

and c,<br />

<br />

<br />

* If x x is a point of discontinuity, f (x 0 ) is <strong>to</strong> be defined as<br />

1<br />

0 ⁄2[f 1(x 0) f 2(x 0)],<br />

where f 1 (x 0 ) is the limit of f (x) when x<br />

approaches x 0 from below, and f 2 (x 0 ) is the limit of f(x) whenx approaches x 0 from above.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!