27.01.2015 Views

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I<br />

OLED<br />

7-9 October 2009, Leuven, Belgium<br />

b U<br />

b U<br />

(1)<br />

LOW<br />

mLOW m HIGH<br />

HIGH<br />

Current [A]<br />

1,E-02<br />

1,E-03<br />

1,E-04<br />

1,E-05<br />

LEP = 60 nm<br />

y = 2,144E-08x 6,729E+00<br />

R 2 = 1,000E+00<br />

LEP = 80 nm<br />

y = 2,350E-08x 6,194E+00<br />

R 2 = 1,000E+00<br />

LEP = 100 nm<br />

y = 2,464E-08x 5,287E+00<br />

R 2 = 9,999E-01<br />

1 10<br />

Voltage [V]<br />

Fig. 3. The effect of the LEP thickness; forward I-V characteristics at 25 o C<br />

and the fitted power functions<br />

In our case above 4 V the HIGH range power function is<br />

effective. For simplicity we deal with the only HIGH range<br />

and we leave HIGH subscript. We use it as follow (2):<br />

I<br />

OLED<br />

mT<br />

, d <br />

T<br />

, d bT<br />

, d U<br />

LEP<br />

LEP<br />

where T is the temperature and d LEP is the thickness of the<br />

LEP.<br />

We have fixed the glass substrate to a cold-plate. In the<br />

case of power dissipation the temperature of the LEP could<br />

be a bit higher than that of the cold-plate. In other words, the<br />

tail of the I-V curve may show a certain degree of selfheating.<br />

We measured this temperature error by an infrared<br />

camera. This error is less than 1 C at the tail of curve.<br />

IV.<br />

LEP<br />

PARAMETER FITTING<br />

We carried out the fitting of power function, and we have<br />

tried to determinate m and b parameters on each curve. Fig. 4<br />

shows the changing of m parameter. If the LEP thickness or<br />

the temperature increases, then the exponent decreases.<br />

Similarly we plotted the b parameter (Fig. 5). If the LEP<br />

thickness or the temperature increases, then the factor<br />

increases.<br />

m as exponent<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 20 40 60 80 100<br />

Thickness of LEP [nm]<br />

Temperature<br />

Fig. 4. The effect of the LEP thickness and temperature for the m exponent<br />

(Temperature range is between 5 and 50 C)<br />

(2)<br />

b as factor<br />

10<br />

8<br />

6<br />

4<br />

2<br />

*1E-8<br />

Temperature<br />

0<br />

0 20 40 60 80 100<br />

Thickness of LEP [nm]<br />

5. The effect of the LEP thickness and temperature for the b factor<br />

(Temperature range is between 5 and 50 C)<br />

These parameters vs. LEP thickness able to change<br />

polynomial way. The temperature dependence of m and b<br />

act as polynomial. That’s why we suggest matrixes for m and<br />

b.<br />

V. MODEL<br />

The problem is similar in the case of two parameters. We<br />

use x instead of m and b (3):<br />

x<br />

T<br />

d<br />

LEP<br />

T X d<br />

LEP<br />

, (3)<br />

where T is a temperature row matrix, d LEP is the thickness<br />

column matrix, X is the parameter matrix. If the temperature<br />

and the LEP thickness is known, then the x(T , d LEP ) matrix<br />

product will give only a number.<br />

As follows we show matrixes when the polynomials are<br />

quadratic (4):<br />

0<br />

x<br />

<br />

11<br />

x12<br />

x13<br />

d<br />

LEP<br />

0 1 2<br />

<br />

<br />

1<br />

x T,<br />

d<br />

LEP<br />

T T T<br />

<br />

x21<br />

x22<br />

x23<br />

d<br />

LEP (4)<br />

<br />

<br />

<br />

2<br />

x<br />

<br />

31<br />

x32<br />

x33<br />

d<br />

LEP <br />

Where the upper index means power exponent.<br />

We determined the M and B matrixes (5), these are:<br />

5.76E<br />

5<br />

M <br />

<br />

<br />

3.30E<br />

6<br />

<br />

3.21E<br />

8<br />

2.21E<br />

3<br />

B <br />

<br />

<br />

2.49E<br />

5<br />

<br />

6.98E<br />

8<br />

VI.<br />

2.26E<br />

2 6.68E<br />

0 <br />

2.05E<br />

4 4.03E<br />

2<br />

<br />

<br />

,<br />

2.64E<br />

8<br />

5.05E<br />

4<br />

3.42E<br />

2 3.14E<br />

1<br />

3.59E<br />

4 4.26E<br />

3<br />

<br />

<br />

4.73E<br />

6 3.28E<br />

5<br />

CONCLUSION<br />

We have constructed the electro-thermal model for<br />

different LEP-thickness white OLEDs. The model uses<br />

power function to approximate the forward bias above 4 V.<br />

(5)<br />

©<strong>EDA</strong> <strong>Publishing</strong>/THERMINIC 2009 122<br />

ISBN: 978-2-35500-010-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!