27.01.2015 Views

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The regime transition at λ β = 1.7 W/m/K between the<br />

thermal insulating and dissipative behaviors is obtained<br />

when β = 45°. This value is related to the close-packed<br />

directions in a membrane plane (for the fcc group). A<br />

significant 4.1 exaltation factor of λ β is found out when β<br />

is increased from 0° (x direction) to 90° (z direction).<br />

IV.<br />

CONCLUSION<br />

A suspended thermal nanomaterial made up of a Si<br />

membrane with stretched SA Ge QDs forming phonon<br />

waveguides is proposed. A hybrid behavior, which can<br />

be either insulating or dissipative is shown for thermal<br />

transport in our nanomaterial. As a consequence, a wide<br />

range of applications can be possibly covered by the<br />

membranous nanomaterial from thermoelectrics to heat<br />

sinking. Phonon wave-guiding is analyzed as a function<br />

of an angle β in a membrane plane. This deflection angle<br />

is defined from the in-plane direction [100], showing a<br />

significant QD constriction, to that [001] of the QD<br />

stretching. As observed from the dispersion curves<br />

computed by lattice dynamics, the throughput thermal<br />

conductivity λ is significantly increased in the direction<br />

[001] with respect to that [100]. Numerical results show<br />

that (i) the suspended nanomaterial has a thermalinsulating<br />

behavior for moderate β-values while (ii) heat<br />

dissipation is much more significant when β is increased<br />

up to 90°. A significant exaltation factor of 4 to 5 folds is<br />

obtained for the throughput λ between these operation<br />

regimes for an example molecular-scale device.<br />

7-9 October 2009, Leuven, Belgium<br />

[8] J.-N. Gillet, Y. Chalopin, and S. Volz, ASME J. Heat<br />

Transfer 131, 043206 (2009).<br />

[9] J.-N. Gillet, and S. Volz, J. Electron. Mater., in press.<br />

[10] J.-N. Gillet, Outstanding Scientific Paper Award, in Proc.<br />

28 th International Conference on Thermoelectrics (ITC<br />

2009), H. Bottner, Ed., Freiburg, Germany, 26-30 July<br />

2009.<br />

[11] W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A.<br />

Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901<br />

(2006).<br />

[12] T. M. Tritt, H. Bottner, and L. Chen, MRS Bulletin 33,<br />

366-368 (2008).<br />

[13] M. T. Dove, Introduction to Lattice Dynamics,<br />

Cambridge Topics in Mineral Physics and Chemistry, No<br />

4 (Cambridge Univ. Press, Cambridge, UK, 1993).<br />

[14] Z. Jian, Z. Kaiming, and X. Xide, Phys. Rev. B 41,<br />

12915-12918 (1990).<br />

[15] Y. Chalopin, J.-N. Gillet, and S. Volz, Phys. Rev. B 77,<br />

233309 (2008).<br />

[16] C. J. Glassbrenner, and G. A. Slack, Phys. Rev. 134,<br />

A1058-A1069 (1964).<br />

[17] D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B<br />

46, 6131-6140 (1992).<br />

[18] C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A.<br />

Bodapati, P. Keblinski, and P. Zschack, Science 315, 351-<br />

353 (2007).<br />

ACKNOWLEDGMENT<br />

The authors thank the European Consortium NANOPACK<br />

(www.nanopack.org) for its financial contribution.<br />

REFERENCES<br />

[1] R. Venkatasubramanian, Ed., Nanoscale Heat Transport -<br />

From Fundamentals to Devices, (Mater. Res. Soc. Symp.<br />

Proc. Volume 1172E, Warrendale, PA, 2009).<br />

[2] P. W. K. Rothemund, Nature (London) 440, 297-302<br />

(2006).<br />

[3] V. Maurice, G. Despert, S. Zanna, M.-P. Bacos, and P.<br />

Marcus, Nat. Mater. 3, 687-691 (2004).<br />

[4] A. Condon, Nat. Rev. Genet. 7, 565-575 (2006).<br />

[5] C. R. Martin, and P. Kohli, Nat. Rev. Drug Discov. 2, 29-<br />

37 (2002).<br />

[6] A. I. Yakimov, A. V. Dvurechenskii, and A. I. Nikiforov,<br />

J. Nanoelectron. Optoelectron. 1, 119-175 (2006).<br />

[7] S. Kiravittaya, H. Heidemeyer, and O. G. Schmidt, Appl.<br />

Phys. Lett. 86, 263113 (2005).<br />

©<strong>EDA</strong> <strong>Publishing</strong>/THERMINIC 2009 208<br />

ISBN: 978-2-35500-010-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!