27.01.2015 Views

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

G 2 (resp. C 2 , F 2 ) and G 2e (resp. C 2e , F 2e ) is the external node<br />

sub-block of G 2 (resp. C 2 , F 2 ).<br />

The link is realized by the method of Lagrange multipliers<br />

[9]. It transforms a minimization problem under constraints<br />

in a minimization problem without constraint. The Lagrange<br />

multipliers allow to solve the heat equation (7), ensuring the<br />

continuity of temperature at the interfaces of the two models<br />

(11).<br />

T<br />

' = X T<br />

'<br />

2<br />

2<br />

1<br />

T ' = X T '<br />

1<br />

(11)<br />

Where X is the cross coupling between the nodes of the<br />

two model interfaces.<br />

This mathematical method applied to the thermal model<br />

coupling issue is described in [10]. The looking for the<br />

singular points of the Lagrangian gives the following matrix<br />

system:<br />

⎡C<br />

11<br />

⎢<br />

⎢C21<br />

⎢−<br />

X<br />

⎢<br />

⎢⎣<br />

0<br />

C<br />

12<br />

22<br />

C<br />

I<br />

0<br />

− X<br />

I<br />

0<br />

0<br />

T<br />

0⎤<br />

⎡T<br />

' 1⎤<br />

⎡G<br />

11 G<br />

⎥⎢<br />

⎥ ⎢<br />

0⎥<br />

⎢T<br />

'<br />

2⎥<br />

+ ⎢G21<br />

G<br />

0⎥<br />

⎢λ<br />

⎥ ⎢<br />

1 0 0<br />

⎥⎢<br />

⎥ ⎢<br />

0⎥⎦<br />

⎢⎣<br />

λ2<br />

⎥⎦<br />

⎢⎣<br />

− X I<br />

12<br />

22<br />

T<br />

0 − X ⎤⎡T<br />

' 1⎤<br />

⎡F'<br />

1⎤<br />

⎥⎢<br />

⎥ ⎢ ⎥<br />

0 I ⎥⎢<br />

T ' 2⎥<br />

= ⎢<br />

F'<br />

2⎥<br />

⎥ (12)<br />

0 0 ⎢λ<br />

1⎥<br />

⎢ 0 ⎥<br />

⎥⎢<br />

⎥ ⎢ ⎥<br />

0 0 ⎥⎦<br />

⎣λ<br />

2⎦<br />

⎣ 0 ⎦<br />

Eliminating λ 1 , λ 2 and T’ 2 in (12), leads to a new equation<br />

system (13) which describes the thermal behavior in<br />

transient state of the two coupled models.<br />

~<br />

C T ~ ~<br />

' 1 + GT ' 1 = F<br />

(13)<br />

where<br />

~<br />

T<br />

T<br />

C = C11<br />

+ X C21<br />

+ C12<br />

X + X C22<br />

X<br />

~<br />

T<br />

T<br />

G = G11<br />

+ X G21<br />

+ G12<br />

X + X G22<br />

X (14)<br />

~<br />

T<br />

F = F'<br />

+ X F'<br />

1<br />

2<br />

In this methodology, the coupling matrix X is an<br />

application of the nodes of interface 2 to interface 1. For<br />

each node Node2 j to be replaced in interface 2, the<br />

surrounding 4 nodes in interface 1 are identified (see Figure<br />

4).<br />

T2<br />

T j<br />

(x,y)<br />

T1<br />

7-9 October 2009, Leuven, Belgium<br />

1+<br />

x 1+<br />

y<br />

1−<br />

x 1+<br />

y<br />

α1(<br />

x,<br />

y)<br />

=<br />

α 2 ( x,<br />

y)<br />

=<br />

2 2<br />

2 2<br />

1−<br />

x 1−<br />

y<br />

1+<br />

x 1−<br />

y<br />

α3(<br />

x,<br />

y)<br />

=<br />

α 4 ( x,<br />

y)<br />

=<br />

2 2<br />

2 2<br />

(15)<br />

Then, the temperature T j of the node Node2 j is computed<br />

through equation (16).<br />

T j<br />

( x,<br />

y)<br />

= α1(<br />

x,<br />

y).<br />

T1+<br />

α 2 ( x,<br />

y).<br />

T 2 +<br />

α ( x,<br />

y).<br />

T3<br />

+ α ( x,<br />

y).<br />

T 4<br />

3<br />

4<br />

(16)<br />

The equation (16) expresses the temperature T j as the<br />

linear combination Λ j of the second interface temperatures.<br />

T<br />

j<br />

= Λ j.T ' 1<br />

(17)<br />

Finally, the coupling matrix X between the two models is<br />

built by all the line matrices Λ j (18).<br />

[ Λ Λ<br />

] T<br />

X = (18)<br />

1 1 Λ ne' 2<br />

Where ne' 2 is the number of external nodes in the model 2.<br />

X is a rectangular matrix of size ne' 2 x (n 1 +ni 2 ), where n 1 is<br />

the number of nodes of the model 1 and ni 2 is the number of<br />

internal nodes of the model 2.<br />

The Flex-CTM resulting from the coupling process is a<br />

RC network which can be solved with a Spice like transient<br />

simulator. Fixed potentials are applied on the model, to<br />

impose temperatures Ti on several external nodes of the<br />

Flex-CTM. Then, convection resistors R conv (19) are plugged<br />

on the convection surface nodes nodes to impose heat<br />

transfer coefficients on surfaces of the system.<br />

R conv<br />

= 1<br />

hS<br />

(19)<br />

Where h is the heat transfer coefficient applied on the<br />

surface S of the model. Then, the power sources Q are<br />

applied on P’ interface nodes and the Flex-CTM can be<br />

simulated in a transient scenario (see Figure 5).<br />

T3<br />

T4<br />

Nodes of the interface 1<br />

Node Node2 j<br />

Figure 4: Neighbor Nodes Configuration for a Hexahedral Mesh of the<br />

Interface 1<br />

Thus, the neighbor nodes of Node2 j are weighted,<br />

computing the form factors at the coordinates of the node<br />

Node2 j . Equation (15) shows the general form factors for a<br />

hexahedral mesh of first order.<br />

Power<br />

Sources Q<br />

Imposed<br />

Temperatures Ti<br />

Flex-CTM<br />

Figure 5: Simulation Condition Application<br />

Convection<br />

Resistors R conv<br />

V. INTEREST OF THE FLEX-CTM METHODOLOGY<br />

The building process of the Flex-CTM methodology is<br />

illustrated Figure 9. The models generated by the method<br />

present numerous advantages over the existing thermal<br />

models.<br />

Flex-CTM models meet the specifications because they<br />

©<strong>EDA</strong> <strong>Publishing</strong>/THERMINIC 2009 20<br />

ISBN: 978-2-35500-010-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!