27.01.2015 Views

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7-9 October 2009, Leuven, Belgium<br />

NOMENCLATURE<br />

D h channel hydraulic diameter (m)<br />

f<br />

flow pulsation frequency (Hz)<br />

h<br />

heat transfer coefficient, q/ΔT lm (W/(m 2 K))<br />

H channel depth (m)<br />

k<br />

thermal conductivity of water (W/(mK))<br />

L channel length (m)<br />

Nu Nusselt number, h D h /k<br />

δNu relative heat transfer enhancement, (Nu p -Nu s )/Nu s<br />

Pr Prandtl number, ν/α<br />

q surface heat flux (W/m 2 )<br />

Re Reynolds number, U D h /ν<br />

Re p pulsating Reynolds number, U p D h /ν<br />

T i water inlet mean temperature (°C)<br />

T o water outlet mean temperature (°C)<br />

T w channel wall temperature (°C)<br />

logarithmic mean temperature difference,<br />

ΔT lm<br />

( Tw −To) −( Tw −Ti)<br />

(°C)<br />

log (( T −T ) ( T −T)<br />

)<br />

w o w i<br />

U mean channel steady velocity component (m/s)<br />

U p mean channel pulsating velocity amplitude (m/s)<br />

W channel width (m)<br />

Wo Womersley number, ½D h (2πf/ν) 1/2<br />

Greek symbols<br />

α thermal diffusivity (m 2 /s)<br />

ν<br />

kinematic viscosity (m 2 /s)<br />

Subscripts<br />

p<br />

q<br />

s<br />

T<br />

pulsating flow component<br />

constant wall heat flux<br />

steady flow component<br />

constant wall temperature<br />

REFERENCES<br />

[1] B. Agostini, M. Fabbri, J.E. Park, L. Wojtan, J.R. Thome, B. Michel,<br />

“State of the art of high heat flux cooling technologies,” Heat Transfer<br />

Eng., vol. 28 (4), pp. 258-281, 2007.<br />

[2] P.S. Lee, S. V. Garimella, D. Liu, “Investigation of heat transfer in<br />

rectangular microchannels,” Int. J. Heat Mass Transfer, vol. 48 (9), pp.<br />

1688-1704, 2005.<br />

[3] S. G. Kandlikar, “Heat transfer mechanisms during flow boiling in<br />

microchannels,” J. Heat Transfer-Trans. ASME, vol. 126 (1), pp. 8-16,<br />

2004.<br />

[4] H.Y. Wu, P. Cheng, “Boiling instability in parallel silicon<br />

microchannels at different heat flux,” Int. J. Heat Mass Transfer, vol.<br />

47 (17-18), pp. 3631-3641, 2004.<br />

[5] G. Hetsroni, A. Mosyak, Z. Segal, G. Ziskind, “A uniform temperature<br />

heat sink for cooling of electronic devices,” Int. J. Heat Mass Transfer,<br />

vol. 45 (16), pp. 3275-3286, 2002.<br />

[6] G. Hetsroni, A. Mosyak, Z. Segal, “Nonuniform temperature<br />

distribution in electronic devices cooled by flow in parallel<br />

microchannels,” IEEE Trans. Components Packaging Technol., vol.<br />

24 (1), pp. 16-23, 2001.<br />

[7] S.G. Kandlikar, W.K. Kuan, D.A. Willistein, J. Borrelli, “Stabilization<br />

of flow boiling in microchannels using pressure drop elements and<br />

fabricated nucleation sites,” J. Heat Transfer-Trans. ASME, vol. 128<br />

(4), pp. 389-396, 2006.<br />

[8] T. Moschandreou, M. Zamir, “Heat transfer in a tube with pulsating<br />

flow and constant heat flux,” Int. J. Heat Mass Transfer, vol. 40 (10),<br />

pp. 2461-2466, 1997.<br />

[9] H.N. Hemida, M.N. Sabry, A. Abdel-Rahim, H. Mansour, “Theoretical<br />

analysis of heat transfer in laminar pulsating flow,” Int. J. Heat Mass<br />

Transfer, vol. 45 (8), pp. 1767-1780, 2002.<br />

[10] O.I. Craciunescu, S.T. Clegg, “Pulsatile blood flow effects on<br />

temperature distribution and heat transfer in rigid vessels,” J. Biomech.<br />

Eng.-Trans. ASME, vol. 123 (5), pp. 500-505, 2001.<br />

[11] E.A.M. Elshafei, M.S. Mohamed, H. Mansour, M. Sakr,<br />

“Experimental study of heat transfer in pulsating turbulent flow in a<br />

pipe,” Int. J. Heat Fluid Flow, vol. 29 (4), pp. 1029-1038, 2008.<br />

[12] T. Nishimura, N. Oka, Y. Yoshinaka, K. Kunitsugu, “Influence of<br />

imposed oscillatory frequency on mass transfer enhancement of<br />

grooved channels for pulsatile flow,” Int. J. Heat Mass Transfer, vol.<br />

43 (13), pp. 2365-2374, 2000.<br />

[13] B. Olayiwola, P. Walzel, “Cross-flow transport and heat transfer<br />

enhancement in laminar pulsed flow,” Chem. Eng. Proc., vol. 47 (5),<br />

pp. 929-937, 2008.<br />

[14] B. Olayiwola, P. Walzel, “Experimental investigation of the effects of<br />

fluid properties and geometry on forced convection in finned ducts<br />

with flow pulsation,” J. Heat Transfer-Trans. ASME, vol. 131 (5),<br />

051701, 2009.<br />

[15] A. Pavlova, M. Amitay, “Electronic cooling using synthetic jet<br />

impingement,” J. Heat Transfer-Trans. ASME, vol. 128 (9), pp. 897-<br />

907, 2006.<br />

[16] P. Valiorgue, T. Persoons, A. McGuinn, D.B. Murray, “Heat transfer<br />

mechanisms in an impinging synthetic jet for a small jet-to-surface<br />

spacing,” Exp. Therm. Fluid Sci., vol. 33 (4), pp. 597-603, 2009.<br />

[17] T. Persoons, T.S. O'Donovan, D.B. Murray, “Heat transfer in adjacent<br />

interacting impinging synthetic jets,” Proc. ASME Summer Heat<br />

Transfer Conf., San Francisco (CA), 19-23 Jul 2009<br />

[18] R.K. Shah, A.L. London, “Laminar flow forced convection in ducts”,<br />

Suppl. to Adv. Heat Transfer, New York: Academic Press, 1978.<br />

[19] K. Stephan, “Wärmeübertragang und Druckabfall beinichtausgebildeter<br />

Laminarströmung in Röhren und in ebenen Spalten”, Chem.<br />

Ing. Tech., 31, 773-778, 1959.<br />

[20] D.K. Edwards, V.E. Denny, A.F. Mills, Transfer processes. 2nd Ed.<br />

Washington, DC: Hemisphere, 1979.<br />

©<strong>EDA</strong> <strong>Publishing</strong>/THERMINIC 2009 167<br />

ISBN: 978-2-35500-010-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!