30.12.2012 Views

Superconducting Technology Assessment - nitrd

Superconducting Technology Assessment - nitrd

Superconducting Technology Assessment - nitrd

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

[6] K. B. Theobald, G. R. Gao, and T. L. Sterling, “<strong>Superconducting</strong><br />

processors for HTMT: Issues and challenges,” in Proc. 7th Symp.<br />

Frontiers of Massively Parallel Computation 1999, pp. 260–267.<br />

[7] K. K. Likharev, “Superconductor devices for ultrafast computing,” in<br />

Applications of Superconductivity, H. Weinstock, Ed. Dordrecht,<br />

The Netherlands: Kluwer, 1999.<br />

[8] International <strong>Technology</strong> Roadmap for Semiconductors: Emerging<br />

research devices (2003). [Online]. Available: http://public.itrs.net/<br />

Files/2003ITRS/ERD2003.pdf<br />

[9] M. Tanaka, F. Matsuzaki, T. Kondo, N. Nakajima, Y. Yamanashi, A.<br />

Fujimaki, H. Hayakawa, N. Yoshikawa, H. Terai, and S. Yorozu, “A<br />

single-flux-quantum logic prototype microprocessor,” in Dig. Tech.<br />

Papers 2003 IEEE Int. Solid-State Circuits Conf., pp. 1–3.<br />

[10] J. Spargo, Q. Herr, and L. Abelson, “High speed digital devices, circuits,<br />

and applications in the U.S.,” in Extended Abstracts 8th Int.<br />

Superconductivity Electronics Conf., 2001, pp. 101–102.<br />

[11] P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ technology: Physics<br />

and devices,” Int. J. High Speed Electron. Syst., vol. 11, pp. 257–305,<br />

2001.<br />

[12] Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering<br />

with Josephson-junction devices,” Rev. Mod. Phys., vol. 73,<br />

pp. 357–400, Apr. 2001.<br />

[13] V. K. Semenov and D. V. Averin, “SFQ control circuits for<br />

Josephson junction qubits,” IEEE Trans. Appl. Superconduct., vol.<br />

13, pp. 960–965, June 2003.<br />

[14] M. F. Bocko, A. M. Herr, and M. J. Feldman, “Prospects for<br />

quantum coherent computation using superconducting electronics,”<br />

IEEE Trans. Appl. Superconduct., vol. 7, pp. 3638–3641, June 1997.<br />

[15] A. W. Kleinsasser, “High performance Nb Josephson devices for<br />

petaflops computing,” IEEE Trans. Appl. Superconduct., vol. 11, pp.<br />

1043–1049, Mar. 2001.<br />

[16] L. A. Abelson, Q. P. Herr, G. L. Kerber, M. Leung, and T. S.<br />

Tighe, “Manufacturability of superconductor electronics for a<br />

petaflops-scale computer,” IEEE Trans. Appl. Superconduct.,vol.9,<br />

pp. 3202–3207, June 1999.<br />

[17] A. Silver, A. Kleinsasser, G. Kerber, Q. Herr, M. Dorojevets, P.<br />

Bunyk, and L. Abelson, “Development of superconductor electronics<br />

technology for high end computing,” Supercond. Sci.<br />

Technol., vol. 16, pp. 1368–1374, Oct. 2003.<br />

[18] G. L. Kerber, L. A. Abelson, K. Edwards, R. Hu, M. W. Johnson,<br />

M. L. Leung, and J. Luine, “Fabrication of high current density Nb<br />

integrated circuits using a self-aligned junction anodization process,”<br />

IEEE Trans. Appl. Superconduct., vol. 13, pp. 82–86, June 2003.<br />

[19] Q. P. Herr, M. S. Wire, and A. D. Smith, “High speed data link between<br />

digital superconductor chips,” Appl. Phys. Lett., vol. 80, pp.<br />

3210–3212, Apr. 2002.<br />

[20] J. E. Savageau, C. J. Burroughs, P. A. A. Booi, M. W. Cromar, S.<br />

P. Benz, and J. A. Koch, “<strong>Superconducting</strong> integrated circuit fabrication<br />

with low temperature ECR-based PECVD SiO dielectric<br />

films,” IEEE Trans. Appl. Superconduct., vol. 5, pp. 2303–2309, June<br />

1995.<br />

[21] K. K. Berggren, E. M. Macedo, D. A. Feld, and J. P. Sage, “Low<br />

„ superconductive circuits fabricated on 150-mm-diameter wafers<br />

using a doubly planarized Nb/AlO /Nb process,” IEEE Trans. Appl.<br />

Superconduct., vol. 9, pp. 3271–3274, June 1999.<br />

[22] R. Dolata, M. I. Khabipov, F.-Im. Buchholz, W. Kessel, and J.<br />

Niemeyer, “Nb/Al O -Al/Nb process development for the fabrication<br />

of fast-switching circuits in RSFQ logic,” in Proc. 2nd<br />

Eur. Conf. Applied Superconductivity (EUCAS’95), vol. 2, pp.<br />

1709–1712.<br />

[23] D. Balashov, M. I. Khabipov, F.-Im. Buchholz, W. Kessel, and J.<br />

Niemeyer, “SINIS fabrication process for realizing integrated circuits<br />

in RSFQ impulse logic,” Supercond. Sci. Technol., vol. 12, pp.<br />

864–867, 1999.<br />

[24] M. I. Khabipov, D. Balashov, F.-Im. Buchholz, W. Kessel, and J.<br />

Niemeyer, “RSFQ circuitry realized in a SINIS technology process,”<br />

IEEE Trans. Appl. Superconduct., vol. 9, pp. 4682–4687, Dec. 1999.<br />

[25] X. Meng, A. Wong, and T. Van Duzer, “Micron and submicron<br />

Nb/Al-AlO -Al/Nb tunnel junctions with high critical current<br />

densities,” IEEE Trans. Appl. Superconduct., vol. 11, pp. 365–368,<br />

Mar. 2001.<br />

[26] M. Maezawa, M. Suzuki, and A. Shoji, “Design and operation of a<br />

rapid single flux quantum demultiplexer,” Supercond. Sci. Technol.,<br />

vol. 15, pp. 1744–1746, 2002.<br />

[27] H. Yamamori, M. Itoh, H. Sasaki, S. P. Benz, and P. D. Dresselhaus,<br />

“All-NbN digital-to-analog converters for a programmable voltage<br />

standard,” Supercond. Sci. Technol., vol. 14, p. 1048, Dec. 2001.<br />

[28] HYPRES design rules. HYPRES, Elmsford, NY. [Online]. Available:<br />

http://www.hypres.com<br />

[29] S. Topylgo, private communication, Nov. 2003.<br />

[30] J. C. Villegier, M. Salez, F. Miletto-Granozio, and A. Karpov, “Processing<br />

and characterization of high Jc NbN superconducting tunnel<br />

junctions for THz analog circuits and RSFQ,” IEEE Trans. Appl. Superconduct.,<br />

vol. 9, pp. 3216–3219, June 1999.<br />

[31] G. L. Kerber, L. A. Abelson, R. N. Elmadjian, and E. G. Ladizinsky,<br />

“Characteristics of junctions and resistors fabrication using an<br />

all-NbN superconductor integrated circuit foundry process,” IEEE<br />

Trans. Appl. Superconduct., vol. 9, pp. 3267–3270, June 1999.<br />

[32] W. Chen, V. Patel, S. K. Tolpygo, D. Yohannes, S. Pottorf, and J.<br />

E. Lukens, “Development toward high-speed integrated circuits and<br />

SQUID qubits with Nb/AlO /Nb Josephson junctions,” IEEE Trans.<br />

Appl. Superconduct., vol. 13, pp. 103–106, June 2003.<br />

[33] S. Tahara, S. Yorozu, Y. Kameda, Y. Hashimoto, H. Numata, T.<br />

Satoh, W. Hattori, and M. Hidaka, “<strong>Superconducting</strong> digital electronics,”<br />

IEEE Trans. Appl. Superconduct., vol. 11, pp. 463–468,<br />

Mar. 2001.<br />

[34] L. Fritzsch, H. Elsner, M. Schubert, and H.-G. Meyer, “SNS and SIS<br />

Josephson junctions with dimensions down to the sub-micron region<br />

prepared by a unified technology,” Supercond. Sci. Technol., vol. 12,<br />

pp. 880–882, 1999.<br />

[35] S. P. Benz, “Superconductor-normal-superconductor junctions for<br />

programmable voltage standards,” Appl. Phys. Lett., vol. 67, pp.<br />

2714–2716, Oct. 1995.<br />

[36] R. Lochschmied, R. Herwig, M. Neuhaus, and W. Jutzi, “A low<br />

power 12 bit flux shuttle shift register with Nb technology,” IEEE<br />

Trans. Appl. Superconduct., vol. 7, pp. 2983–2986, June 1997.<br />

[37] H. Terai and Z. Wang, “9 K operation of RSFQ logic cells fabricated<br />

by NbN integrated circuit technology,” IEEE Trans. Appl. Superconduct.,<br />

vol. 11, pp. 525–528, Mar. 2001.<br />

[38] O. Kieler, R. Behr, F. Müller, H. Schulze, J. Kohlmann, and J.<br />

Niemeyer, “Improved 1 V programmable Josephson voltage standard<br />

using SINIS junctions,” Physica C, vol. 372–376, pp. 309–311,<br />

2002.<br />

[39] J. K. Freericks, B. K. Nikolic, and P. Miller, “Superconductor-correlated<br />

metal-superconductor Josephson junctions: An optimized class<br />

for high speed digital electronics,” IEEE Trans. Appl. Superconduct.,<br />

vol. 13, pp. 1089–1092, June 2003.<br />

[40] I. P. Nevirkovets, S. E. Shafranjuk, J. B. Ketterson, and E. M.<br />

Rudenko, “Properties of high-jc SINIS junctions,” IEEE Trans.<br />

Appl. Superconduct., vol. 13, pp. 1085–1088, June 2003.<br />

[41] L. Abelson, “Superconductive electronics process technologies,”<br />

in Extended Abstracts 6th Int. Superconductivity Electronics Conf.,<br />

June 1997, pp. 1–4.<br />

[42] X. Meng, A. Bhat, and T. Van Duzer, “Very small critical current<br />

spreads in Nb/AlO /Nb integrated circuits using low temperature<br />

and low stress ECR PECVD silicon oxide films,” IEEE Trans. Appl.<br />

Superconduct., vol. 9, pp. 3208–3211, June 1999.<br />

[43] A. Shoji, M. Aoyagi, S. Kosaka, and F. Shinoki, “Temperature-dependent<br />

properties of niobium nitride Josephson tunnel junctions,”<br />

IEEE Trans. Magn., vol. 23, pp. 1464–1471, Mar. 1987.<br />

[44] M. Radparvar, L. S. Yu-Jahnes, and R. T. Hunt, “All niobium nitride<br />

Josephson tunnel junctions with thermally oxidized magnesium barrier,”<br />

IEEE Trans. Appl. Superconduct., vol. 3, pp. 2050–2053, Mar.<br />

1993.<br />

[45] S. Kubo, M. Asahi, M. Hikita, and M. Igarashi, “Magnetic penetration<br />

depths in superconducting NbN films prepared by reactive dc<br />

magnetron sputtering,” Appl. Phys. Lett., vol. 44, pp. 258–260, Jan.<br />

15, 1984.<br />

[46] S. L. Thomasson, A. W. Moopenn, R. Elmadjian, J. M. Murduck,<br />

J. W. Spargo, L. A. Abelson, and H. W. Chan, “All refractory NbN<br />

integrated circuit process,” IEEE Trans. Appl. Superconduct.,vol.3,<br />

pp. 2058–2061, Mar. 1993.<br />

ABELSON AND KERBER: SUPERCONDUCTOR INTEGRATED CIRCUIT FABRICATION TECHNOLOGY 1531

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!