15.05.2015 Views

Textos de Apoio (pdf)

Textos de Apoio (pdf)

Textos de Apoio (pdf)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ITTC – Recommen<strong>de</strong>d<br />

Procedures<br />

Performance, Propulsion<br />

1978 ITTC Performance Prediction<br />

Method<br />

7.5 – 02<br />

03 – 01.4<br />

Page 5 of 31<br />

Effective Date<br />

1999<br />

Revision<br />

00<br />

C<br />

DM<br />

and<br />

C<br />

DS<br />

⎡<br />

( ) ( )<br />

⎥ ⎥ ⎤<br />

⎞<br />

⎜<br />

⎛ t<br />

⎟⎢<br />

0.04 5<br />

= 2 1 + 2 −<br />

1<br />

2<br />

⎝ c ⎠⎢<br />

6<br />

3<br />

⎣ Rnco<br />

Rnco<br />

⎦<br />

⎛ t ⎞⎛<br />

⎞<br />

2 1 2 ⎜<br />

c<br />

⎜ + ⎟ 1.89 + 1.62.log ⎟<br />

⎝ c ⎠<br />

⎝<br />

k ⎠<br />

= p<br />

−2.5<br />

In the formulae listed above c is the chord<br />

length, t is the maximum thickness, P/D is the<br />

pitch ratio and R nco is the local Reynolds number<br />

at x=0.75. The bla<strong>de</strong> roughness k p is put<br />

k p =30.10 -6 m. R nco must not be lower than 2.10 5<br />

at the open-water test.<br />

2.4.3 Full Scale Wake and Operating Condition<br />

of Propeller<br />

The full scale wake is calculated from the<br />

mo<strong>de</strong>l wake, w TM , and the thrust <strong>de</strong>duction, t:<br />

w<br />

TS<br />

=<br />

( ) ( ) ( 1 + k ) C FS<br />

t + 0.04 + wTM<br />

− t − 0.04<br />

( 1 + k) C FM<br />

+ ∆C<br />

where 0.04 is to take account of rud<strong>de</strong>r effect.<br />

The load of the full scale propeller is obtained<br />

from<br />

K<br />

J<br />

=<br />

S<br />

.<br />

C<br />

T<br />

TS<br />

2 2D<br />

2<br />

1<br />

TS<br />

( 1 − t)( − w ) 2<br />

2<br />

With this K T<br />

/ J as input value the full<br />

scale advance coefficient J TS and the torque<br />

coefficient K QTS are read off from the full scale<br />

propeller characteristics and the following<br />

quantities are calculated<br />

- the rate of revolutions:<br />

F<br />

n<br />

S<br />

( − w )<br />

TS<br />

VS<br />

= 1 (r/s)<br />

J D<br />

TS<br />

- the <strong>de</strong>livered power:<br />

K<br />

5 3 QTS −3<br />

PDS<br />

= 2πρ D nS<br />

10 (kW)<br />

η<br />

- the thrust of the propeller:<br />

K<br />

T 2 4 2<br />

TS<br />

= . J . .<br />

2 TS<br />

ρ D nS<br />

(N)<br />

J<br />

- the torque of the propeller:<br />

KQTS<br />

5 2<br />

QS<br />

= ρD<br />

nS<br />

: (Nm)<br />

η<br />

R<br />

- the effective power:<br />

3 −3<br />

PE = CTS1/<br />

2ρ . VS<br />

. S.10<br />

(kW)<br />

- the total efficiency:<br />

PDS<br />

η<br />

D<br />

=<br />

P<br />

- the hull efficiency:<br />

1 − t<br />

η<br />

H<br />

= 1 − w<br />

E<br />

TS<br />

2.4.4 Mo<strong>de</strong>l-Ship Correlation Factors<br />

Trial prediction of rate of revolutions and <strong>de</strong>livered<br />

power with C P - C N corrections<br />

if CHOICE=0 the final trial predictions will be<br />

calculated from<br />

n T = C N .n S<br />

R<br />

(r/s)<br />

for the rate of revolutions and<br />

P DT = C P .P DS (kW)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!