04.06.2013 Views

PRECIZIA ROBOŢILOR INDUSTRIALI

PRECIZIA ROBOŢILOR INDUSTRIALI

PRECIZIA ROBOŢILOR INDUSTRIALI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MODELAREA ERORILOR CINEMATICE .I.<br />

()<br />

()<br />

∂<br />

0<br />

{ [ T] ⎡θ() t ⎤}<br />

n<br />

⎪⎧ dTn0 t ⎪⎫<br />

n ⎣ ⎦ ⎧ 0 0<br />

⎫<br />

⎨ dθ δ T T n [ T] θ () t Ani θ () t dq<br />

0 ⎬= ⋅ ≡ ⎨ ⋅ ⎡ ⎤ ≡ ⎡ ⎤ ⋅<br />

n<br />

i<br />

ptr X t<br />

θ<br />

⎣ ⎦ ∑ ⎣ ⎦ ⎬<br />

i= 1<br />

⎪⎩ ⎪⎭<br />

[ ]<br />

. (4.54)<br />

∂ ⎩ ⎭<br />

Matricea diferenţială Ani θ () t este înlocuită prin expresia (4.53) în (4.54), astfel rezultând:<br />

⎧ n<br />

0 i−1 i−1 ⎪∑ [ T] ⎡θ i 1() t U i [ T] θni<br />

1() t dqi, qi() t k i;<br />

i−1 ⎣ − ⎤<br />

⎦ ⋅ ⋅ ⎡<br />

n ⎣ − ⎤<br />

⎦ ⋅ ⋅<br />

0 0 ⎪ i= 1<br />

δ Tn⋅ [ T] ⎡ () t<br />

n ⎣θ ⎤<br />

⎦ = ⎨<br />

; (4.55)<br />

n<br />

⎪ 0 i i<br />

[ T] ⎡θ i() t U i [ T] θni()<br />

t dqi, qi() t k<br />

i ⎣<br />

⎤<br />

⎦ ⋅ ⋅ ⎡ ⎤ ⋅ ⋅<br />

n ⎣ ⎦<br />

i<br />

⎪⎩<br />

∑<br />

i= 1<br />

Expresia de mai sus se multiplică la dreapta cu inversa matricei de situare, scrisă sub forma:<br />

[ ] θ () [ ] θ () , ()<br />

⎧ ⎡ ⎤ ⎡ ⎤<br />

i−1 −1 0 −1 i−1 T ni 1 t T i 1 t qit k<br />

0 −1 ⎪ n ⎣ − ⎦⋅ i−1 ⎣ − ⎦ ⋅ i<br />

[ T] ⎡ ()<br />

n ⎣θt ⎤<br />

⎦ = ⎨ i −1 0 −1<br />

i<br />

[ T] ⎡θni () t ⎤⋅ [ T] ⎡θi() t ⎤,<br />

qi() t ⋅ k<br />

n i<br />

i<br />

⎪<br />

⎩ ⎣ ⎦ ⎣ ⎦<br />

Ca urmare, se explicitează operatorul matriceal de diferenţiere al transformării omogene:<br />

140<br />

; (4.56)<br />

⎧ n<br />

0 0 −1 ⎪∑ [ T] ⎡θi 10() t Ui[ T] θi<br />

10() t dqi, i−1⎣ − ⎤<br />

⎦ ⋅ ⋅ ⎡<br />

i−1⎣ − ⎤<br />

⎦ ⋅<br />

0 ⎪ i= 1<br />

δ Tn<br />

≡ ⎨ n<br />

⎪ 0 −1 0 −1<br />

[ T] ⎡θi0 () t ⎤ ⋅Ui⋅ [ T] ⎡θi0 () t ⎤ ⋅dqi, ⎪⎩<br />

∑ i ⎣ ⎦ i ⎣ ⎦<br />

i= 1<br />

i−1 qi() t ⋅ ki;<br />

;<br />

i<br />

qi() t ⋅ ki.<br />

(4.57)<br />

⎧ n<br />

0 *<br />

i−1 , ()<br />

n<br />

⎪∑<br />

δ T ⋅dq i 1 i in cazul q i t ⋅ k<br />

−<br />

i<br />

0 0 * ⎪ i= 1<br />

δ Tn ≡ ∑ δ T ⋅dq i( i 1) i ≡<br />

− ⎨ ;<br />

n<br />

i= 1 ⎪ 0 *<br />

i<br />

δ T ⋅dq i , in cazul q i() t ⋅ k<br />

i<br />

i<br />

⎪⎩<br />

∑<br />

i= 1<br />

(4.58)<br />

0 *<br />

În această ecuaţie, δ T<br />

i(<br />

i−1<br />

) este un operator matriceal de diferenţiere ( 4× 4)<br />

constituit din elementele<br />

0<br />

vectorului diferenţial de mişcare d Xni ⎡<br />

⎣θni () t ⎤<br />

⎦ , pentru fiecare axă ( i = 1→ n)<br />

:<br />

0 * 0 *<br />

⎡ 0 0 −1 δ × d ⎤ ⎧<br />

i−1 ,<br />

0<br />

i i−1 i i−1⎪ T θi 10 t U<br />

i 1 i T θ<br />

i 1<br />

i 10 t qi t k<br />

− ⎣<br />

⎡ − ⎦<br />

⎤⋅ ⋅<br />

− ⎣<br />

⎡ − ⎦<br />

⎤ ⋅ i<br />

δ Ti(<br />

i−1) ≡⎢ ⎥≡⎨<br />

. (4.59)<br />

⎢ ⎥ 0 −1 0 −1<br />

i<br />

0 0 [ T] ⎡θi0 () t ⎤⋅Ui⋅ [ T] ⎡θi0 () t ⎤,<br />

qi() t ⋅ k<br />

⎣ ⎦<br />

⎪<br />

⎩ i ⎣ ⎦ i ⎣ ⎦<br />

i<br />

Operatorul matriceal de derivare parţială U i este substituit în ecuaţia (4.59) prin expresia de definiţie. După<br />

( ) ( ) [ ] () [ ] () ()<br />

efectuarea transformărilor matriceale rezultă expresiile:<br />

i i<br />

[ ] ⎡ ki i ki ( 1 i)<br />

⎤ [ ] [ ]<br />

⎧ 0 0 −1 0 −1<br />

⎡ R p ⎤<br />

i ×Δ ⋅ −Δ ⎡ R − R ⋅p<br />

⎤ ⎫<br />

0 0 1 i i i<br />

i<br />

⎪ −<br />

i[ T] ⋅Ui⋅ i[<br />

T]<br />

= ⎢ ⎥⋅⎢ ⎥⋅⎢<br />

⎥≡<br />

⎪<br />

⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎪<br />

⎪ ⎢⎣000 1⎥⎦ ⎣ 000 0 ⎦ ⎢⎣ 000 1 ⎥⎦<br />

⎪<br />

⎨ ⎬ ; (4.60)<br />

0 i 0 0 i<br />

0 −1 0 −1<br />

⎪ ⎡ [ R] ⋅ ki× [ R] ⋅Δi [ R] ⋅ ki⋅( 1−Δi) ⎤ ⎡<br />

i i i i[ R] −<br />

i[<br />

R] ⋅p<br />

⎤<br />

i ⎪<br />

⎪ ≡⎢ ⎥⋅⎢ ⎥ ⎪<br />

⎪ ⎢ ⎥ ⎢ ⎥ ⎪<br />

⎩ ⎢⎣ 000 0 ⎥⎦ ⎢⎣ 000 1 ⎥⎦<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!