27.10.2013 Views

Cours d'Analyse 4 - Faculté des Sciences Rabat

Cours d'Analyse 4 - Faculté des Sciences Rabat

Cours d'Analyse 4 - Faculté des Sciences Rabat

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

80 Z. ABDELALI<br />

• L’inetvalle ouvert de convergence est IR.<br />

e (xch(α)) xch(α) 1<br />

ch(xsh(α)) = e 2 (exsh(α) + e−xsh(α) ) = 1<br />

= 1<br />

2 (exeα + exe−α) = 1<br />

2<br />

∞<br />

n=0<br />

2 (exch(α)+xsh(α) + e xch(α)−xsh(α) )<br />

(eα ) n +(e−α ) n<br />

x n!<br />

n = ∞ ch(nα)<br />

n!<br />

n=0<br />

xn .<br />

• Pososns f(x) = arctan( 1+xtan(α)).<br />

On a f est dérivable sur ] − 1, 1[ et<br />

1−x<br />

f ′ (x) =<br />

= i<br />

2<br />

2 sin(α) cos(α)<br />

((1−x) cos(α)) 2 +((1+x) sin(α)) 2 =<br />

2 sin(α) cos(α)<br />

(1−e i2α x)(1−e −i2α x)<br />

∞<br />

(e−i2α(n+1) − ei2α(n+1) )xn = ∞<br />

sin(2α(n + 1))xn n=0<br />

n=0<br />

i e−i2α = ( 2 1−e−i2α ei2α − x 1−ei2αx )<br />

On suppose que α ∈] − π π , [, on a f(0) = α, donc pour x ∈] − 1, 1[, qui est l’inetvalle ouvert<br />

2 2<br />

de convergence,<br />

D’où<br />

f(x) = α +<br />

∞<br />

n=1<br />

sin(2nα)<br />

x<br />

n<br />

n .<br />

Exercice 7. 1) Calcul direct.<br />

2) Supposons que h(x) = ∞<br />

anxn est une série entière solution de (∗) sur ] − 1, 1[. On a<br />

n=0<br />

h ′ (x) = ∞<br />

nanxn−1 , h ′′ (x) = ∞<br />

n(n − 1)anxn−2 = ∞<br />

n=1<br />

n=2<br />

xh ′ (x) = ∞<br />

nanxn , x2h ′′ = ∞<br />

n(n − 1)anxn .<br />

n=1<br />

2 = (1 − x 2 )h ′′ (x) − xh ′ (x)<br />

n=2<br />

(n + 2)(n + 1)an+2x<br />

n=0<br />

n ,<br />

= 2a2 + (6a3 − a1)x + ∞<br />

((n + 2)(n + 1)an+2 − n(n − 1)an − nan)xn n=2<br />

= 2a2 + (6a3 − a1)x + ∞<br />

((n + 2)(n + 1)an+2 − n<br />

n=2<br />

2an)xn .<br />

Ainsi a2 = 1, 6a3 − a1 = 0, et pour n ≥ 2, (n + 2)(n + 1)an+2 − n 2 an = 0. Donc<br />

D’où h(x) = a0 + ∞<br />

a2p+1 = (2p − 1)2 · · · 32 a1 =<br />

(2p + 1)!<br />

p=1<br />

a2p = 22p−1 ((p − 1)!) 2<br />

, p ≥ 1,<br />

(2p)!<br />

2 2p−1 ((p−1)!) 2<br />

(2p)! x 2p + a1 · ∞<br />

((2p)!) 2<br />

(2p + 1)! · 2 2p · p! a1 =<br />

p=0<br />

|<br />

lim<br />

p→∞<br />

22p+1 ((p)!) 2<br />

(2(p+1))! x2(p+1) |<br />

| 22p−1 ((p−1)!) 2<br />

x (2p)!<br />

2p | = x2 |<br />

< 1 et lim<br />

p→∞<br />

Donc d’après la règle de d’Alembert les deux séries ∞<br />

convergent sur ] − 1, 1[, donc h converge sur ] − 1, 1[.<br />

(2p)!<br />

(2p + 1) · 2 2p · p! a1 .<br />

(2p)!<br />

(2p+1)·2 2p ·p! x2p+1 . De plus pour 0 = |x| < 1, on a<br />

(2p+2)!<br />

(2p+3)·22(p+1) ·(p+1)! x2p+3 |<br />

|<br />

(2p)!<br />

(2p+1)·22p ·p! x2p+1 |<br />

p=1<br />

= x 2 < 1.<br />

22p−1 ((p−1)!) 2<br />

x (2p)!<br />

2p et ∞ (2p)!<br />

(2p+1)·2<br />

p=0<br />

2p ·p! x2p+1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!