12.01.2015 Views

Download - Academy Publisher

Download - Academy Publisher

Download - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EMP = { PMU(0,<br />

x ),<br />

PMU(1,<br />

x ), ⋅⋅⋅PMU(<br />

i,<br />

x ) ⋅⋅⋅,<br />

0<br />

PMU(<br />

N −1,<br />

x )}<br />

N −1<br />

Where, PMU ( i,<br />

) stands for the x -th PMU in<br />

i<br />

x i<br />

1<br />

i<br />

⑾<br />

G .<br />

i<br />

B. Designing the relative fitness function<br />

1) Influence degree and influence degree coefficient<br />

Usually, EMP that simultaneously satisfies the<br />

three objectives does not exist. So the weights should<br />

be assigned to the three objectives. The three weights<br />

are expressed byW , W andW :<br />

C<br />

T<br />

W<br />

C+ WT<br />

+ WQ<br />

=1<br />

⑿<br />

According to the coding regulations, a chromosome<br />

(an individual) is described as X = [ x0x1<br />

⋅⋅⋅ x i<br />

⋅⋅⋅ xN<br />

−1]<br />

,<br />

which stands for an EMP. Where: x is an integer,<br />

0 ≤ xi p m i<br />

, and m<br />

i<br />

is the number of PMU in G<br />

i<br />

. For<br />

each chromosome (individual), the ( C , T,<br />

Q)<br />

value<br />

can be computed through ⒀ in every generation.<br />

Then, the objective eigenvalue matrix is computed and<br />

described as ⒁.<br />

N−1<br />

N−2<br />

⎧<br />

C( X)<br />

= Cin<br />

+ Ctr=<br />

+<br />

⎪<br />

∑C<br />

i(<br />

xi<br />

) ∑C<br />

i,<br />

i+<br />

1(<br />

xi<br />

, xi<br />

+ 1)<br />

i=<br />

0<br />

i=<br />

0<br />

⎪<br />

N−1<br />

N−2<br />

⎨T( X)<br />

= Tin<br />

+ Ttr=∑<br />

Ti<br />

( xi<br />

) + ∑T<br />

i,<br />

i+<br />

1(<br />

xi<br />

, xi<br />

+ 1)<br />

i=<br />

0<br />

i=<br />

0<br />

⎪<br />

N−1<br />

⎪Q( X)<br />

= ∑(1-Q i(<br />

xi<br />

))<br />

⎩<br />

i=<br />

0<br />

⎡C(<br />

X1)<br />

C(<br />

X2)<br />

... C(<br />

XM)<br />

⎤<br />

⎢<br />

⎥<br />

⎢<br />

T(<br />

X1)<br />

T(<br />

X2)<br />

... T(<br />

X )<br />

⒁<br />

M<br />

⎥<br />

⎢⎣<br />

Q(<br />

X ) ( ) ... ( ) ⎥<br />

1<br />

Q X2<br />

Q XM<br />

⎦<br />

Cmax , Cmin,<br />

Tmax,<br />

Tmin,<br />

Qmaxand Q min<br />

can be computed<br />

based on the eigenvalue matrix of a generation.<br />

For a new generation, each individual is newly<br />

produced. The authors define this influence as the<br />

influence degree of the objective non-standardization,<br />

marked as E , E and E , computed by ⒂:<br />

Where:<br />

C<br />

T<br />

Q<br />

Q<br />

i<br />

⒀<br />

α<br />

⎧ ⎛ C ⎞<br />

max<br />

−Cmin<br />

⎪E<br />

⎜<br />

⎟<br />

C<br />

= WC<br />

⋅<br />

⎪ ⎝ Cmax+ Cmin<br />

⎠<br />

⒂<br />

⎪<br />

α<br />

⎛T<br />

− ⎞<br />

max<br />

Tmin<br />

⎨ E = ⋅<br />

⎜<br />

⎟<br />

T<br />

WT<br />

⎪ ⎝Tmax<br />

+ Tmin<br />

⎠<br />

α<br />

⎪ ⎛ Q −Q<br />

⎞<br />

max min<br />

⎪E<br />

= W ⋅<br />

⎪<br />

⎜<br />

⎟<br />

Q Q<br />

⎩ ⎝ Q + Q<br />

max min ⎠<br />

C − C<br />

max min , T − T<br />

max min and Q − Q<br />

max min<br />

C +C<br />

T + T<br />

Q + Q<br />

max<br />

min<br />

respectively express the relative changing range of C, T<br />

and Q. α is the adjusting factors. Considering that the<br />

weights have the more direct influence on the<br />

optimization result than the eigenvalue relative changing<br />

range usually α is given a positive value less than 1. In<br />

this paper, α = 0. 5 .<br />

Then, the three influence degrees expressed by ⒂<br />

are compared with each other, and the maximum and<br />

minimum influence degree can be obtained, marked as<br />

E and E<br />

max<br />

min<br />

. The influence degree coefficient<br />

e e , e , e ) is computed by ⒃.<br />

(<br />

c t q<br />

max<br />

min<br />

max<br />

min<br />

⎧ E − E<br />

C min<br />

⎪ e =<br />

c<br />

⎪ E<br />

max<br />

− E<br />

min<br />

⎪ E − E<br />

⒃<br />

T min<br />

⎨ e<br />

t<br />

=<br />

⎪ E − E<br />

max<br />

min<br />

⎪ E − E<br />

Q min<br />

⎪ e<br />

q<br />

=<br />

⎩ E − E<br />

max<br />

min<br />

2) Relative membership degree based on influence<br />

degree coefficients<br />

From ⑸, we can know that the less the three<br />

objective values of an individual are, the better the<br />

individual is. So, if Cmin ,Tmin<br />

and Qmin<br />

are far<br />

to Cmax ,Tmax<br />

and Qmax<br />

respectively, the strong relative<br />

membership degree of an individual respectively<br />

corresponding to C min<br />

, Tmin<br />

and Q min<br />

is defined as ⒄:<br />

⎧<br />

C - C ( X )<br />

max<br />

⎪ r1<br />

C<br />

( X ) =<br />

⎪<br />

C - C<br />

max<br />

min<br />

⒄<br />

⎪<br />

T − T ( X )<br />

max<br />

⎨ r ( X ) =<br />

1 T<br />

⎪<br />

T − T<br />

max<br />

min<br />

⎪<br />

Q − Q ( X )<br />

max<br />

⎪<br />

r ( X ) =<br />

1 Q<br />

⎩<br />

Q − Q<br />

max<br />

min<br />

But, if Cmin,Tmin<br />

and Qmin<br />

are near<br />

to Cmax,Tmax<br />

and Q max<br />

respectively, another function is<br />

defined to compute the relative membership degree,<br />

which is called as the weak relative membership<br />

degree shown in ⒅:<br />

⎧<br />

C ( X )<br />

⎪rC<br />

2<br />

( X ) = 1-<br />

⎪<br />

C +C<br />

max min<br />

⒅<br />

⎪<br />

T ( X )<br />

⎨ r ( X ) = 1-<br />

T 2<br />

⎪<br />

T +T<br />

max min<br />

⎪<br />

Q(<br />

X )<br />

⎪<br />

r ( X ) = 1-<br />

Q 2<br />

⎩<br />

Q +Q<br />

max min<br />

Finally, the relative membership degree based on<br />

influence degree coefficients e ( ec<br />

, et<br />

, eq<br />

) can be<br />

obtained by linearly superposing ⒄ and ⒅, shown<br />

as ⒆:<br />

⎧ r ( X ) = e r ( X ) + (1 − e ) r ( X )<br />

C<br />

c C 1<br />

c C 2<br />

⎪<br />

⎨ r ( X ) = e r<br />

1<br />

( X ) + (1 − e ) r<br />

2<br />

( X )<br />

⒆<br />

T<br />

t T<br />

t T<br />

⎪<br />

⎩r<br />

( X ) = e r ( X ) + (1 − e ) r ( X )<br />

Q<br />

q Q 1<br />

q Q 2<br />

When e ( ec,<br />

et<br />

, eq<br />

) is equal to e (1,1,1 ) , ⒆ is<br />

becoming ⒄, which expresses the objective changing<br />

range has the most great influence on the optimization<br />

result.<br />

From ⒄ , ⒅ and ⒆ , the objective eigenvalue<br />

matrix described as ⒁ can be transformed into the<br />

relative membership degree matrix described as ⒇:<br />

⎡r<br />

( X ) r ( X ) ... r ( X ) ⎤<br />

C 1 C 2<br />

C M<br />

⎢<br />

⎥<br />

⒇<br />

⎢r<br />

( X ) r ( X ) ... r ( X )<br />

T 1 T 2<br />

T M ⎥<br />

⎢<br />

⎥<br />

⎣r<br />

( X ) r ( X ) ... r ( X )<br />

Q 1 Q 2<br />

Q M ⎦<br />

3) Relative fitness function based on relative<br />

membership degree<br />

Extracting out the maximal value and the minimal<br />

value from each row of the matrix described as ⒇,<br />

which are marked as r and r b<br />

:<br />

g<br />

M<br />

M<br />

M<br />

r = { r , r , r } = {maxr<br />

( X ),maxr<br />

( X ),maxr<br />

( X )} = {1,1,1} (21)<br />

g<br />

gC<br />

gT<br />

gQ<br />

i=<br />

1<br />

C<br />

i<br />

i=<br />

1<br />

r = { r , r , r<br />

M<br />

M<br />

M<br />

} = {min r ( X ), min r ( X ), min r ( X )} = {0,0,0} (22)<br />

b<br />

bC<br />

bT<br />

bQ<br />

i=<br />

1<br />

C<br />

i<br />

i=<br />

1<br />

T<br />

T<br />

i<br />

i<br />

i=<br />

1<br />

i=<br />

1<br />

Q<br />

Q<br />

i<br />

i<br />

204

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!