12.01.2015 Views

Download - Academy Publisher

Download - Academy Publisher

Download - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

symbolic aggregation operation. β ∈[ 0, g]<br />

and g+1 is<br />

the cardinality of S. Let i = round(β ) and α = β − i<br />

be two values, such that, i ∈ [ 0, g]<br />

and<br />

α ∈[−0.5,0.5] then α is called a Symbolic<br />

Translation.<br />

Let S={s0, s1, …,sg} be a linguistic term set and<br />

β ∈[ 0, g]<br />

be a value representing the result of a<br />

symbolic aggregation operation, then the 2-tuple that<br />

expresses the equivalent information to β is obtained<br />

with the following function:<br />

∇ :[0, g]<br />

→ S × [ −0.5,0.5]<br />

⎧ si<br />

, i = round(<br />

β)<br />

(1)<br />

∇(<br />

β)<br />

= ( si<br />

, α),<br />

with⎨<br />

⎩α<br />

= β − i,<br />

α ∈[<br />

−0.5,0.5]<br />

Where round(.) is the usual round operation, si had the<br />

closest index label to β .<br />

Proposition 1[14] Let S={s0, s1, …,sg}be a<br />

linguistic term set and ( s i<br />

, α)<br />

be a 2-tuple. There is<br />

−1<br />

always a ∇ function, such that, from a 2-tuple it<br />

returns its equivalent numerical value β ∈[ 0, g]<br />

, which<br />

is:<br />

−1<br />

∇ : S × [ −0.5,0.5]<br />

→ [0, g]<br />

(2)<br />

−1<br />

∇ ( si , α ) = i + α = β<br />

⑴ A linguistic 2-tuple negation operator [14]<br />

−1<br />

Neg((<br />

si<br />

, α))<br />

= ∇(<br />

g − ( ∇ ( si<br />

, α)))<br />

(3)<br />

⑵ Linguistic 2-tuple aggregation operators<br />

Let ( s1,<br />

α1),(<br />

s1,<br />

α<br />

2<br />

), L ,( s n<br />

, α<br />

n<br />

) be a set with n<br />

linguistic 2-tuples and ω = ( ω1,<br />

ω2<br />

, L,<br />

ωn<br />

) be the<br />

n<br />

related weighted vector with ∑ω<br />

i<br />

= 1 , then the<br />

i=<br />

1<br />

weighted average operator of linguistic 2-tuples<br />

ξ ω<br />

= ∇(<br />

(( s , α ),( s<br />

1<br />

n<br />

∑<br />

i=<br />

1<br />

1<br />

∇<br />

−1<br />

2<br />

, α ), L,(<br />

s<br />

2<br />

( s , α ) ω )<br />

i<br />

i<br />

i<br />

n<br />

ω<br />

ξ is<br />

, α )) = (ˆ, s ˆ) α<br />

Let P ( pij, α<br />

ij<br />

)<br />

n × n<br />

comparison matrix and the element ( p , α )<br />

n<br />

(4)<br />

= be a linguistic 2-tuple<br />

ij<br />

ij<br />

represent<br />

the result of comparing two solutions. If the following<br />

propositions are right.<br />

(1) p ∈S; α ∈[ −0.5,0.5]<br />

ij ij<br />

−1<br />

(2) ∇ ( pii, αii<br />

) = g/ 2<br />

−1 −1<br />

ij<br />

αij ji<br />

α<br />

ji<br />

(3) ∇ ( p , ) +∇ ( p , ) = g<br />

then P is called a linguistic 2-tuple judgment matrix.<br />

(5)<br />

Let P= ( pij , α<br />

ij<br />

)<br />

n × n<br />

be a linguistic 2-tuple judgment<br />

matrix, if ∀ i, j,<br />

k ∈ I , elements in P has the properties<br />

of the formula (6), then P is called a linguistic 2-tuple<br />

judgment matrix with additive consistency.<br />

−1 −1 −1<br />

∇ ( p , α ) +∇ ( p , α ) =∇ ( p , α ) + g/2, ∀i, j,<br />

k∈ I (6)<br />

ij ij jk jk ik ik<br />

Ⅲ. CALCULATE THE ELEMENT CONSISTENCY LEVEL<br />

If the judgment matrix given by an expert is additive<br />

consistent, the comparison of each pair of alternative is<br />

identical with the indirect value based on additive<br />

consistency. In real decision making environment,<br />

however, one element in the given judgment matrix may<br />

have high similarity to its indirect value and another<br />

element may have low similarity to its indirect value.<br />

Therefore, it is unreasonable to give the expert a fixed<br />

weight when the judgment matrices are aggregated into<br />

group decision judgment matrix. To measure the<br />

similarity between an element and its indirect valued, the<br />

concept of element consistency level was introduced .<br />

If a linguistic 2-tuple representation judgment matrix P<br />

P = ( , α ) ) is additive consistent, there exists<br />

p ij<br />

( [<br />

ij<br />

] n × n<br />

∇<br />

−1<br />

( p<br />

−1<br />

−1<br />

, α ) = ∇ ( p , α ) − ∇ ( p , α ) g / 2 .<br />

ij ij<br />

kj kj<br />

ki ki<br />

+<br />

The property can be used to compute the indirect value of<br />

an element in the judgment matrix.<br />

Based on the two properties of an additive consistent<br />

linguistic 2-tuple judgment matrix<br />

−1<br />

−1<br />

−1<br />

∇ ( pij , α<br />

ij<br />

) = ∇ ( pkj<br />

, α<br />

kj<br />

) − ∇ ( pki<br />

, α<br />

ki<br />

) + g / 2<br />

−1<br />

−1<br />

and ∇ ( pij , α<br />

ij<br />

) + ∇ ( p<br />

ji<br />

, α<br />

ji<br />

) = g , the following<br />

formulas can be reasoned out.<br />

−1<br />

∇ ( p , α ) =∇<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

ij<br />

−1<br />

−1<br />

∇ ( p , α ) =∇<br />

−1<br />

−1<br />

∇ ( p , α ) =∇<br />

−1<br />

( p<br />

( p<br />

kj<br />

( p<br />

ik<br />

ik<br />

, α ) +∇<br />

ik<br />

, α ) −∇<br />

kj<br />

, α ) −∇<br />

ik<br />

−1<br />

−1<br />

−1<br />

( p<br />

( p<br />

ki<br />

( p<br />

kj<br />

, α ) −g/2<br />

, α ) + g/2<br />

jk<br />

kj<br />

ki<br />

, α ) + g/2<br />

Therefore, the indirect valued of an element in a<br />

linguistic 2-tuple judgment with additive consistency can<br />

be calculated through the neighbor elements. There are<br />

different elements in the judgment matrix can be used to<br />

compute an element’s indirect value, thus, to assessment<br />

the indirect values comprehensively, the RMM( Row<br />

Mean Method) is used to calculate the indirect value of<br />

an element. The following formulas is induced from the<br />

above formula<br />

cp<br />

cp<br />

p1<br />

ij<br />

p2<br />

ij<br />

cp<br />

=<br />

n<br />

∑<br />

k = 1<br />

k ≠i,<br />

j<br />

=<br />

p3<br />

ij<br />

( ∇<br />

n<br />

∑<br />

k=<br />

1<br />

k≠i,<br />

j<br />

=<br />

−1<br />

( ∇<br />

n<br />

∑<br />

k=<br />

1<br />

k≠i,<br />

j<br />

( p<br />

−1<br />

( ∇<br />

p<br />

ik<br />

( p<br />

−1<br />

p<br />

, α<br />

p<br />

kj<br />

( p<br />

ik<br />

p<br />

, α<br />

p<br />

ik<br />

) + ∇<br />

−1<br />

n − 2<br />

kj<br />

p<br />

, α<br />

( p<br />

) −∇<br />

−1<br />

n − 2<br />

ik<br />

p<br />

kj<br />

( p<br />

) −∇<br />

−1<br />

n − 2<br />

p<br />

, α<br />

p<br />

ki<br />

( p<br />

kj<br />

jk<br />

) − g / 2)<br />

p<br />

, α<br />

p<br />

jk<br />

ki<br />

) + g /2)<br />

p<br />

, α<br />

ik<br />

) + g /2)<br />

(7)<br />

(8)<br />

(9)<br />

(10)<br />

70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!