12.01.2015 Views

Download - Academy Publisher

Download - Academy Publisher

Download - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(2) T ' = T ∪{<br />

~<br />

t } − Tt<br />

;<br />

~ • ~<br />

•<br />

(3) F ' = F ∪{(<br />

p,<br />

t ) | p ∈ ti}<br />

∪{(<br />

t , p)<br />

| p ∈to<br />

}<br />

•<br />

o<br />

} − Ft<br />

( , M<br />

0<br />

•<br />

−{( p,<br />

ti)<br />

| p∈<br />

ti}<br />

−{(<br />

to,<br />

p)<br />

| p ∈t<br />

.<br />

Definition 4.3 ( N ', M<br />

0'<br />

) obtained from N ) by<br />

t-subnet reduction operation comprises net N'<br />

and<br />

marking M<br />

0'<br />

, where M 0' = M<br />

( P \ Pt<br />

) 0<br />

(where M<br />

( P\<br />

Pt<br />

)<br />

is obtained from M by deleted the vector corresponding<br />

to P<br />

t<br />

).<br />

Definition 4.4 A net ( N<br />

t<br />

, M t 0)<br />

is said to be a t-closed<br />

net if we add a transition t<br />

t<br />

and arcs<br />

•<br />

•<br />

{( p , t t<br />

) | p ∈t<br />

o<br />

} ∪{( tt<br />

, p)<br />

| p ∈ ti}<br />

to t-subnet<br />

( N<br />

t<br />

, M t 0)<br />

, and the marking of ( N<br />

t<br />

, M t 0)<br />

is preserved.<br />

Note that in this section, let<br />

( N ', M<br />

0<br />

') : the original net; N<br />

t<br />

= ( Pt<br />

, Tt<br />

; Ft<br />

, Wt<br />

) : the<br />

p-subnet ; ( N<br />

t<br />

, M t 0)<br />

: the p-subnet system; ( N<br />

t<br />

, M t 0)<br />

:<br />

the closed t-subnet system; ( N , M<br />

0<br />

) : the reduced net.<br />

Theorem 4.1 Suppose that ( N , M<br />

0)<br />

is obtained from<br />

(<br />

0<br />

N ', M ')<br />

by t-subnet reduction operation. Then<br />

( N ', M<br />

0'<br />

) is bounded iff ( N,<br />

M<br />

0)<br />

and ( N<br />

t<br />

, M t 0)<br />

are<br />

bounded.<br />

Proof. (1) Since N , M ) is bounded, then ∀ p ∈ P ,<br />

(<br />

0<br />

∃k > 0 1<br />

such that ∀ M ∈ R ( M<br />

0)<br />

, M ( p)<br />

≤ k1<br />

.<br />

Since ( N<br />

t<br />

, M t 0)<br />

is bounded, then ∀ p ∈ Pt<br />

, ∃k > 2<br />

0<br />

such that ∀ M<br />

t<br />

∈ R( M t 0)<br />

, M t<br />

( p)<br />

≤ k2<br />

.<br />

Let k = k 1<br />

+ k2<br />

, ∀ p ∈ P'<br />

, ∀ M ' ∈ R(<br />

M<br />

0'<br />

) such that<br />

M '(<br />

p)<br />

≤ k . So, ( N ', M<br />

0'<br />

) is bounded.<br />

(2) Suppose that N , M ) is unbounded, then<br />

(<br />

0<br />

∃ p ∈ P , ∀k > 0 , M ∈ R M )<br />

∃ such that<br />

(<br />

0<br />

' ( M<br />

0<br />

M ( p)<br />

> k . That is ∀k > 0 , M ∈ R ')<br />

that M '(<br />

p)<br />

> k<br />

N ', M ') is bounded.<br />

(<br />

0<br />

∃ such<br />

. This contradicts with the fact that<br />

Theorem 4.2 Suppose that N , M ) is obtained from<br />

(<br />

0<br />

(<br />

0<br />

N ', M ')<br />

by t-subnet reduction operation. If<br />

•<br />

( N ', M<br />

0'<br />

) is live and t i<br />

⊆{ p|<br />

p∈P'<br />

∧(<br />

M'(<br />

p)<br />

> 0)}<br />

,<br />

then ( N , M<br />

0)<br />

and ( Nt , M t 0)<br />

are live.<br />

Theorem 4.3 Suppose that N , M ) is obtained from<br />

(<br />

0<br />

(<br />

0<br />

N ', M ')<br />

by t-subnet reduction operation. If<br />

( N , M<br />

0)<br />

and ( Nt , M t 0)<br />

are live, then ( N ', M<br />

0'<br />

) is<br />

live.<br />

Ⅴ. APPLICATIONS<br />

In this section we apply results of Section Ⅲ and<br />

Section Ⅳ to reduce a flexible manufacturing system.<br />

The manufacturing system consists of one workstation<br />

WS for assembly work and two machining centers for<br />

machining. Machining center_1 and WS share robot R<br />

1<br />

.<br />

Machining center_2 and WS share robot R<br />

2<br />

. The<br />

system runs as follows:<br />

In the machining center_1, the intermediate parts are<br />

machined by machine M<br />

1<br />

. Each part is fixtured to a<br />

pallet and loaded into the machine M<br />

1<br />

by robot R<br />

1<br />

.<br />

After processing, robot R 1<br />

unloads the final product,<br />

defixtures it and returns the fixture to M<br />

1<br />

.<br />

In the machining center_2, parts are machined first by<br />

machine M<br />

3<br />

and then by machine M<br />

4<br />

. Each part is<br />

automatically fixtured to a pallet and loaded into the<br />

machine. After processing, robot R<br />

2<br />

unloads the<br />

intermediate part from M<br />

3<br />

into buffer B. At machining<br />

station M<br />

4<br />

, intermediate parts are automatically loaded<br />

into M<br />

4<br />

and processed. When M<br />

4<br />

finishes processing a<br />

part, the robot R<br />

2<br />

unloads the final product, defixtures it<br />

and returns the fixture to M<br />

3<br />

.<br />

When workstation WS is ready to execute the<br />

assembly task, it requests robot R 1<br />

, robot R 2<br />

and<br />

machine M<br />

2<br />

and acquires them if they are available.<br />

When the workstation starts an assembly task, it cannot<br />

be interrupted until it is completed. When WS completes,<br />

it releases the robot R1<br />

and robot R<br />

2<br />

.<br />

Firstly, we give the Petri-net based model of the<br />

manufacturing system. Secondly, a reduced net system is<br />

obtained by p-subnet reduction method and t-subnet<br />

reduction method. Thirdly, we will analysis property<br />

preservation of the reduced net system.<br />

The Petri-net based model ( N , M<br />

0)<br />

of the original<br />

manufacturing system is illustrated in Fig.5.1.<br />

p 11<br />

t 11<br />

p 12<br />

p 13<br />

t 12<br />

p 14<br />

p 15<br />

t 13<br />

p 16<br />

p 17<br />

t 14<br />

t 31<br />

p r11<br />

t r11 t r12 p 33<br />

t<br />

p 32<br />

r13<br />

p 31<br />

p 34 p32<br />

p r12<br />

t 33<br />

t r13<br />

t r14<br />

p r14<br />

t 34<br />

p 35<br />

p 21<br />

t 21<br />

p<br />

p 23<br />

22<br />

p r21<br />

t 22<br />

t r21 p 24<br />

p r22<br />

p r23 t 23<br />

p 25<br />

p 26<br />

t 24<br />

t r22<br />

p 27<br />

t 25<br />

p r24<br />

t 26<br />

Fig. 5.1 The original net system<br />

p 28<br />

p 29<br />

252

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!