08.08.2013 Views

Alberto Risueño Pérez - Gredos - Universidad de Salamanca

Alberto Risueño Pérez - Gredos - Universidad de Salamanca

Alberto Risueño Pérez - Gredos - Universidad de Salamanca

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

myeloma pathogenesis. Proc Natl Acad Sci USA 2008; 105:<br />

12885–12890.<br />

15 Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F<br />

et al. microRNAs 15a and 16 regulate tumor proliferation in<br />

multiple myeloma. Blood 2009; 113: 6669–6680.<br />

16 Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L,<br />

Fernan<strong>de</strong>z-Cymering C et al. Distinctive microRNA signature of<br />

acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin.<br />

Proc Natl Acad Sci USA 2008; 105: 3945–3950.<br />

17 Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS,<br />

Paschka P et al. MicroRNA expression in cytogenetically normal<br />

acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.<br />

18 Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda<br />

BD et al. Karyotype specific microRNA signature in chronic<br />

lymphocytic leukemia. Blood 2009; 114: 3872–3879.<br />

19 Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The<br />

impact of microRNAs on protein output. Nature 2008; 455: 64–71.<br />

20 Bartel DP. MicroRNAs: target recognition and regulatory functions.<br />

Cell 2009; 136: 215–233.<br />

21 Gutierrez NC, Castellanos MV, Martin ML, Mateos MV, Hernan<strong>de</strong>z<br />

JM, Fernan<strong>de</strong>z M et al. Prognostic and biological implications<br />

of genetic abnormalities in multiple myeloma un<strong>de</strong>rgoing autologous<br />

stem cell transplantation: t(4;14) is the most relevant<br />

adverse prognostic factor, whereas RB <strong>de</strong>letion as a unique<br />

abnormality is not associated with adverse prognosis. Leukemia<br />

2007; 21: 143–150.<br />

22 Livak KJ, Schmittgen TD. Analysis of relative gene expression data<br />

using real-time quantitative PCR and the 2(-Delta Delta C(T))<br />

Method. Methods 2001; 25: 402–408.<br />

23 Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N<br />

et al. I<strong>de</strong>ntification by real-time PCR of 13 mature microRNAs<br />

differentially expressed in colorectal cancer and non-tumoral<br />

tissues. Mol Cancer 2006; 5: 29.<br />

24 Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis<br />

and display of genome-wi<strong>de</strong> expression patterns. Proc Natl Acad<br />

Sci USA 1998; 95: 14863–14868.<br />

25 Tusher VG, Tibshirani R, Chu G. Significance analysis of<br />

microarrays applied to the ionizing radiation response. Proc Natl<br />

Acad Sci USA 2001; 98: 5116–5121.<br />

26 Goeman JJ, van <strong>de</strong> Geer SA, <strong>de</strong> KF, van Houwelingen HC. A global<br />

test for groups of genes: testing association with a clinical<br />

outcome. Bioinformatics 2004; 20: 93–99.<br />

27 Gutierrez NC, Lopez-Perez R, Hernan<strong>de</strong>z JM, Isidro I, Gonzalez B,<br />

Delgado M et al. Gene expression profile reveals <strong>de</strong>regulation of<br />

genes with relevant functions in the different subclasses of acute<br />

myeloid leukemia. Leukemia 2005; 19: 402–409.<br />

28 Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP.<br />

Summaries of Affymetrix GeneChip probe level data. Nucleic<br />

Acids Res 2003; 31: e15.<br />

29 Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an<br />

integrated resource for microRNA-target interactions. Nucleic<br />

Acids Res 2009; 37: D105–D110.<br />

30 Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs<br />

and siRNAs. Cell 2009; 136: 642–655.<br />

31 Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of<br />

human miRNAs and indications for an involvement of miRNA in cell<br />

growth and apoptosis. Nucleic Acids Res 2005; 33: 1290–1297.<br />

32 Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R et al.<br />

Regulation by let-7 and lin-4 miRNAs results in target mRNA<br />

<strong>de</strong>gradation. Cell 2005; 122: 553–563.<br />

33 Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM,<br />

Castle J et al. Microarray analysis shows that some microRNAs<br />

downregulate large numbers of target mRNAs. Nature 2005; 433:<br />

769–773.<br />

34 Wang X, Wang X. Systematic i<strong>de</strong>ntification of microRNA functions<br />

by combining target prediction and expression profiling. Nucleic<br />

Acids Res 2006; 34: 1646–1652.<br />

35 Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL et al.<br />

Using expression profiling data to i<strong>de</strong>ntify human microRNA<br />

targets. Nat Methods 2007; 4: 1045–1049.<br />

36 Li SC, Tang P, Lin WC. Intronic microRNA: discovery and<br />

biological implications. DNA Cell Biol 2007; 26: 195–207.<br />

microRNAs in myeloma<br />

NC Gutiérrez et al<br />

37 Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D et al.<br />

MicroRNA expression profiles classify human cancers. Nature<br />

2005; 435: 834–838.<br />

38 Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB et al. MicroRNA<br />

expression signatures accurately discriminate acute lymphoblastic<br />

leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA<br />

2007; 104: 19971–19976.<br />

39 Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H et al. The muscle-specific<br />

microRNAs miR-1 and miR-133 produce opposing effects on<br />

apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes.<br />

J Cell Sci 2007; 120: 3045–3052.<br />

40 Zhan F, Barlogie B, Shaughnessy Jr J. Toward the i<strong>de</strong>ntification of<br />

distinct molecular and clinical entities of multiple myeloma using<br />

global gene expression profiling. Semin Hematol 2003; 40: 308–320.<br />

41 Dorsett Y, McBri<strong>de</strong> KM, Jankovic M, Gazumyan A, Thai TH,<br />

Robbiani DF et al. MicroRNA-155 suppresses activation-induced<br />

cytidine <strong>de</strong>aminase-mediated Myc-Igh translocation. Immunity<br />

2008; 28: 630–638.<br />

42 Vigorito E, Perks KL, breu-Goodger C, Bunting S, Xiang Z,<br />

Kohlhaas S et al. microRNA-155 regulates the generation of<br />

immunoglobulin class-switched plasma cells. Immunity 2007; 27:<br />

847–859.<br />

43 Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C et al.<br />

Characterization of microRNA expression levels and their biological<br />

correlates in human cancer cell lines. Cancer Res 2007; 67:<br />

2456–2468.<br />

44 Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired<br />

microRNA processing enhances cellular transformation and<br />

tumorigenesis. Nat Genet 2007; 39: 673–677.<br />

45 Chen H, Li M, Campbell RA, Burkhardt K, Zhu D, Li SG et al.<br />

Interference with nuclear factor kappa B and c-Jun NH2-terminal<br />

kinase signaling by TRAF6C small interfering RNA inhibits<br />

myeloma cell proliferation and enhances apoptosis. Oncogene<br />

2006; 25: 6520–6527.<br />

46 Song KW, Talamas FX, Suttmann RT, Olson PS, Barnett JW, Lee<br />

SW et al. The kinase activities of interleukin-1 receptor associated<br />

kinase (IRAK)-1 and 4 are redundant in the control of inflammatory<br />

cytokine expression in human cells. Mol Immunol 2009; 46:<br />

1458–1466.<br />

47 Moynagh PN. The Pellino family: IRAK E3 ligases with emerging<br />

roles in innate immune signalling. Trends Immunol 2009; 30:33–42.<br />

48 Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB<strong>de</strong>pen<strong>de</strong>nt<br />

induction of microRNA miR-146, an inhibitor targeted<br />

to signaling proteins of innate immune responses. Proc Natl Acad<br />

Sci USA 2006; 103: 12481–12486.<br />

49 Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK.<br />

Upregulated miR-146a expression in peripheral blood mononuclear<br />

cells from rheumatoid arthritis patients. Arthritis Res Ther<br />

2008; 10: R101.<br />

50 Maiso P, Ocio EM, Garayoa M, Montero JC, Hofmann F, Garcia-<br />

Echeverria C et al. The insulin-like growth factor-I receptor<br />

inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis<br />

in multiple myeloma cells. Br J Haematol 2008; 141: 470–482.<br />

51 Hi<strong>de</strong>shima T, An<strong>de</strong>rson KC. Molecular mechanisms of novel<br />

therapeutic approaches for multiple myeloma. Nat Rev Cancer<br />

2002; 2: 927–937.<br />

52 Igarashi K, Ochiai K, Muto A. Architecture and dynamics of the<br />

transcription factor network that regulates B-to-plasma cell<br />

differentiation. J Biochem 2007; 141: 783–789.<br />

53 Cooper D, Lindberg FP, Gamble JR, Brown EJ, Vadas MA.<br />

Transendothelial migration of neutrophils involves integrin-associated<br />

protein (CD47). Proc Natl Acad Sci USA 1995; 92: 3978–3982.<br />

54 Mateo V, Brown EJ, Biron G, Rubio M, Fischer A, Deist FL et al.<br />

Mechanisms of CD47-induced caspase-in<strong>de</strong>pen<strong>de</strong>nt cell <strong>de</strong>ath in<br />

normal and leukemic cells: link between phosphatidylserine<br />

exposure and cytoskeleton organization. Blood 2002; 100:<br />

2882–2890.<br />

55 Gutierrez NC, Ocio EM, Maiso P, Ferminan E, Delgado M, Lopez-<br />

Perez R et al. Gene expression profiling of B-lymphocyte and<br />

plasma cell populations from Wal<strong>de</strong>nström’s macroglobulinemia<br />

comparison with expression patterns of the same cell-counterparts<br />

from other B-cell neoplasms. Leukemia 2007; 21: 541–549.<br />

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)<br />

637<br />

Leukemia

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!