16.01.2013 Views

Handbook of air conditioning and refrigeration / Shan K

Handbook of air conditioning and refrigeration / Shan K

Handbook of air conditioning and refrigeration / Shan K

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REFRIGERANTS, REFRIGERATION CYCLES, AND REFRIGERATION SYSTEMS 9.43<br />

where qrc,l � <strong>refrigeration</strong> capacity <strong>of</strong> lower system, Btu/h (W)<br />

qrf,l � <strong>refrigeration</strong> effect <strong>of</strong> lower system, Btu/lb (J/kg)<br />

Total work input to the compressors in both higher <strong>and</strong> lower systems Win, Btu/lb (J/kg), <strong>of</strong> refrigerant<br />

in the lower system can be evaluated as<br />

Win � (h2 � h1�) � (9.48)<br />

where h1� � enthalpy <strong>of</strong> vapor refrigerant leaving heat exchanger, Btu/lb (J/kg). The coefficient <strong>of</strong><br />

performance <strong>of</strong> the cascade system is given as<br />

m˙ h(h6 � h5) m˙ l<br />

COP ref � q rf<br />

W in<br />

�<br />

(9.49)<br />

Example 9.3. A cascade system for an environmental chamber is designed to operate at the following<br />

conditions during summer:<br />

Lower system Higher system<br />

Refrigerant HFC-125 HCFC-22<br />

Evaporating temperature,°F �60 10<br />

Evaporating pressure, psia 12.75 47.46<br />

Condensing temperature,°F 20 100<br />

Condensing pressure, psia 78.5 210.6<br />

Suction temperature,°F �20<br />

Subcooling after heat exchanger,°F 1<br />

Refrigerating load, Btu/h 100,000<br />

Vapor refrigerant enters the compressor <strong>of</strong> the higher system at a dry saturated state, <strong>and</strong> liquid refrigerant<br />

leaves the condenser <strong>of</strong> the higher system without subcooling. Ignore the pressure losses<br />

in the pipelines <strong>and</strong> valves, <strong>and</strong> assume that the compression processes for both the higher <strong>and</strong><br />

lower systems are isentropic.<br />

Based on the data from the Properties <strong>of</strong> Saturated Liquid <strong>and</strong> Saturated Vapor <strong>of</strong> HFC-125<br />

listed in ASHRAE <strong>H<strong>and</strong>book</strong> 1997, Fundamentals, the following formulas can be used to calculate<br />

the enthalpies <strong>of</strong> the refrigerants:<br />

Enthalpy <strong>of</strong> refrigerant HFC-125 at saturated liquid state at temperature T sl between 0 <strong>and</strong> 50°F<br />

(�17.8 <strong>and</strong> 10°C) h sl, Btu/lb (kJ/kg), is<br />

h sl � 11.04 � 0.300T sl<br />

m˙ l(h 1 � h 4)<br />

m˙ l(h 2 � h 1�) � m˙ h(h 6 � h 5)<br />

Enthalpy <strong>of</strong> refrigerant HFC-125 at saturated vapor state at temperature T sv between �80 <strong>and</strong><br />

�30°F ( �62.2 <strong>and</strong> �34.4°C) h sv, Btu/lb (kJ/kg), is<br />

h sv � 63.30 � 0.14[T sv�(�80)]<br />

Enthalpy difference <strong>of</strong> vapor refrigerant HFC-125 along the constant-entropy line when T con �<br />

30°F (�1.1°C) <strong>and</strong> T ev > 80°F (26.7°C) is<br />

�h sv � 0.175(T con � T ev)<br />

Here T con represents the condensing temperature <strong>and</strong> T ev the evaporating temperature, both in<br />

°F (°C). The specific heat <strong>of</strong> saturated vapor <strong>of</strong> HFC-125 c pv, in the temperature range <strong>of</strong> �80 to<br />

�40°F (�62.2 to �40°C) is 0.14 Btu/lb�°F (586 J/kg�°C). The specific heat <strong>of</strong> saturated liquid

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!