02.05.2013 Views

Evolution__3rd_Edition

Evolution__3rd_Edition

Evolution__3rd_Edition

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

592 PART 5 / Macroevolution<br />

Time (Myr BP)<br />

(a)<br />

Hyracotherium<br />

Mesohippus<br />

Merychippus<br />

Equus<br />

Nanniippus<br />

60 50 40 30 20 10<br />

0<br />

0<br />

Million years ago<br />

(b)<br />

0<br />

5<br />

Equus complicatus Equus scotti<br />

Equus simplicidens<br />

Dinohippus mexicanus<br />

Onohippidium galushai<br />

Hypohippus sp. Dinohippus leidyanus<br />

10<br />

15<br />

20<br />

Megahippus mattewi Pliohippus permix<br />

Megahippus mckennai<br />

(Pseudohipparion)<br />

Protohippus simus (Hipparions)<br />

Merychippus isonesis<br />

Archaeohippus Anchitherium<br />

“Merychippus” primus Merychippus insignis<br />

blackbergi clarencei<br />

Merychippus gunteri<br />

Parahippus leonensis<br />

25<br />

30<br />

35<br />

40<br />

45<br />

50<br />

55<br />

Parahippus tyleri<br />

Miohippus quartus<br />

Mesohippus barbouri<br />

Mesohippus bairdii<br />

Epihippus uintensis Epihippus gracilis<br />

Orohippus pumulis<br />

Hyracotherium tapirinum Hyracotherium vaccassiense<br />

Hyracotherium angustidens<br />

Figure 21.1<br />

(a) Modern horses are descended from a group containing<br />

a number of lineages that have increased in average body size<br />

through the past 50 million years. The inset shows the smallest<br />

known species of Hyracotherium, H. sandrae (from the early<br />

Eocene of Wyoming) silhouetted against a cat for size<br />

comparison. (100 lb ≈ 45 kg.)(b) The phylogenetic relations<br />

of fossil and modern horse species. (c) First molar tooth in<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Body mass (kg)<br />

(d)<br />

(c)<br />

Species pair<br />

Equus simplicidens-Equus complicatus<br />

Parahippus leonensis-Merychippus primus<br />

Parahippus leonensis-Protohippus simus<br />

Miohippus quartis-Anchitherium clarencei<br />

Mesohippus bairdii-Mesohippus barbouri<br />

Equus simplicidens-Equus scotti<br />

Dinohippus mexicanus-Equus simplicidens<br />

Dinohippus leidyanus-Dinohippus mexicanus<br />

Dinohippus leidyanus-Onohippidium galushai<br />

Merychippus isonesis-Pliohippus permix<br />

Megahippus mckennai-Megahippus matthewi<br />

Anchitherium clarencei-Megahippus mckennai<br />

Anchitherium clarencei-Hypohippus large sp.<br />

Parahippus leonensis-Merychippus insignis<br />

Parahippus leonensis-Merychippus isonesis<br />

Parahippus leonensis-Merychippus gunteri<br />

Parahippus tyleri-Parahippus leonensis<br />

Miohippus quartus-Archaeohippus blackbergi<br />

Miohippus quartus-Parahippus tyleri<br />

Mesohippus bairdii-Miohippus quartus<br />

Epihippus gracilis-Mesohippus bairdii<br />

Orohippus pumulis-Epihippus uitensis<br />

Orohippus pumulis-Epihippus gracilis<br />

Hyracotherium vaccassiense-Oronippus pumulis<br />

Hyrocotherium angustidens-Hyracotherium vaccassiense<br />

Hyracotherium angustidens-Hyracotherium tapirinium<br />

Mean species pair evolutionary rate*<br />

M1APL(1)<br />

M1PRTL(3)<br />

However, the use of natural logarithms can be puzzling for people who think<br />

intuitively about changes in terms of percentages rather than logarithms. For them, a<br />

change of 10% is meaningful, a change of 0.1 natural logarithmic units less so.<br />

Fortunately, natural logarithms behave much like percentage changes for short time<br />

intervals. Suppose, for instance, a lineage is evolving at 1 darwin. For times up to about<br />

1,000 years, the percent change will be approximately constant per year for all 1,000<br />

years. That is, after 1,000 years the lineage will have changed by close on 0.1%, and by<br />

about one-thousandth of that amount (that is, 0.0001%) every year up to then. For<br />

2 cm<br />

0.8 in<br />

M1TRNW(2)<br />

M1MSTHT(4)<br />

M1APL(1)<br />

M1TRNW(2)<br />

M1PRTL(3)<br />

M1MSTHT(4)<br />

∆t<br />

(Myr) (d) (d) (d) (d)<br />

2.0 0.000 –0.014 0.115 0.054<br />

3.0 –0.009 –0.026 –0.012 0.154<br />

6.0 0.051 0.034 0.073 0.247<br />

7.0 0.065 0.057 0.049 0.046<br />

1.0 0.157 0.146 0.136 0.050<br />

2.0 0.040 0.005 0.162 0.097<br />

2.0 0.064 0.081 0.088 0.142<br />

2.0 –0.004 –0.026 0.074 –0.054<br />

2.0 0.033 0.027 0.030 –0.074<br />

2.5 0.072 0.101 0.185 0.180<br />

2.0 0.036 0.022 0.064 0.219<br />

4.0 0.083 0.096 0.094 0.109<br />

8.0 0.062 0.072 0.077 0.077<br />

3.0 0.053 0.011 0.038 0.228<br />

3.0 0.030 0.014 0.028 0.339<br />

2.0 –0.023 –0.107 –0.116 0.172<br />

2.0 –0.062 –0.039 –0.179 0.088<br />

7.0 –0.017 –0.018 –0.029 –0.021<br />

5.0 0.067 0.052 0.066 0.091<br />

6.0 0.022 0.018 0.012 0.022<br />

14.0 0.023 0.037 0.032 0.036<br />

4.5 0.047 0.052 0.042 –0.007<br />

4.5 0.026 –0.010 0.006 0.020<br />

2.5 0.011 0.029 0.012 0.068<br />

3.0 0.010 0.026 –0.020 0.000<br />

3.0 0.101 0.106 0.091 0.096<br />

Equus simplicidens-Equus complicatus<br />

0.045 0.047 0.0690 0.104<br />

crown and side view, showing four aspects that were<br />

measured. (d) <strong>Evolution</strong>ary rates for the four measures,<br />

in 26 inferred ancestor–descendant species pairs,<br />

expressed in darwins (d). It is not important to study<br />

the numbers in detail! They are meant only to illustrate<br />

the results that come out of a study of evolutionary rates.<br />

Redrawn, by permission of the publisher, from<br />

MacFadden (1992).<br />

..

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!