02.05.2013 Views

Evolution__3rd_Edition

Evolution__3rd_Edition

Evolution__3rd_Edition

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

630 PART 5 / Macroevolution<br />

The cophylogeny of pocket gophers<br />

and lice ...<br />

22.5.2 Parasites and their hosts may have cophylogenies<br />

(a) Host Parasite<br />

C<br />

C<br />

A<br />

O. heterodus<br />

B<br />

O. cherriei<br />

A<br />

G. costaricensis<br />

B<br />

G. cherriel<br />

C<br />

E<br />

E<br />

D<br />

O. underwoodi<br />

O. cavator<br />

G. setzeri<br />

D<br />

G. panamensis<br />

D<br />

F<br />

O. hispidus<br />

F<br />

G. chapini<br />

I<br />

G<br />

I<br />

H<br />

I<br />

K<br />

L<br />

Z. trichopus<br />

P. bulleri<br />

C. castanops<br />

C. merriami<br />

G. personatus<br />

G. breviceps<br />

G. bursarius (a)<br />

G. bursarius (b)<br />

T. bottae<br />

T. talpoides<br />

In Sections 22.3.1 and 22.3.2 above, we saw that the phylogenies of flowering plant<br />

taxa and the specialist insects that feed on them, or pollinate them, sometimes form<br />

mirror images, or cophylogenies. Host taxa and their specialist parasites can show the<br />

same pattern. Indeed, mirror-image phylogenies were first discovered in parasite–host<br />

relations. Cophylogenies between parasites and hosts are sometimes referred to as<br />

Fahrenholz’s rule.<br />

Hafner et al.’s (1994) research on the rodent family Geomyidae (the pocket gophers)<br />

and their ectoparasitic lice (Mallophaga) is a good example. Hafner et al. sequenced a<br />

mitochondrial gene in 14 species of pocket gophers and their parasitic lice, and used the<br />

data to construct the phylogenies of the two groups (Figure 22.8a). The phylogenies are<br />

nearly mirror images, though there are some deviations. The deviations are probably<br />

due to host switching. For example, at the bottom of the figure, the parasitism of<br />

Thomomys bottae by Geomydoecus actuosi looks like host switching.<br />

G. trichopi<br />

G. nadleri<br />

G. expansus<br />

G. actuosi<br />

G<br />

G. texanus<br />

G. ewingi<br />

G<br />

G<br />

H<br />

G. oklahomensis<br />

I<br />

G. geomydis<br />

J<br />

G. thomomyus<br />

G. perotensis<br />

K<br />

T. minor<br />

L<br />

T. barbarae<br />

Figure 22.8<br />

Mirror-image phylogenies in parasites and hosts. (a) The<br />

phylogenies of 14 species of pocket gophers (Geomyidae)<br />

and 17 of their mallophagan parasites. The phylogenies were<br />

reconstructed from the sequence of a mitochondrial gene<br />

(cytochrome oxidase subunit 1) using the parsimony principle.<br />

The phylogenies mainly form mirror images, but there are<br />

several cases of probable host switching. A pocket gopher<br />

(Geomys bursarius) and louse (Geomydoecus geomydis) are<br />

also illustrated. (b) Test of simultaneity of speciation in<br />

(b)<br />

Chewing lice<br />

Expected number of substitutions per site (×100)<br />

2.0<br />

All substitutions<br />

F<br />

4.0<br />

Synonymous<br />

changes<br />

1.8<br />

3.5<br />

F<br />

1.6<br />

1.4<br />

L<br />

3.0<br />

1.2<br />

J<br />

G<br />

B<br />

2.5<br />

1.0<br />

D 2.0<br />

C<br />

K<br />

0.8<br />

1.5<br />

C<br />

A<br />

0.6<br />

E<br />

0.4<br />

I<br />

1.0<br />

D<br />

0.2 H<br />

0.5<br />

B<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

A<br />

0<br />

0 E 0.4 0.8 1.2<br />

Pocket gophers<br />

Expected number of substitutions per site (×100)<br />

parasites and hosts. The estimated number of substitutions<br />

in various branches in the host phylogeny are plotted against<br />

the numbers in the mirror-image branches in the parasite<br />

phylogeny. Letters on the graph refer to lettered branches in<br />

(a). The clocks in the two taxa probably run at different rates<br />

because of differences in generation times. If the speciation<br />

events were really simultaneous, the points should fall on the<br />

line. The fit is better when only synonymous changes are<br />

counted. Redrawn, by permission, from Hafner et al. (1994).<br />

© 1994 American Association for the Advancement of Science.<br />

..

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!