22.07.2013 Views

II - DCE FEL ČVUT v Praze

II - DCE FEL ČVUT v Praze

II - DCE FEL ČVUT v Praze

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SIMATIC S7 Ex Analog Modules<br />

Interference rejection, error limits<br />

Interference voltage rejection for f = n x (f1 1 %),<br />

(f1 = interference frequency)<br />

Common-mode rejection<br />

(UISO < 60 V)<br />

> 130 dB<br />

Normal-mode rejection<br />

(interference peak value<br />

< rated value of input<br />

range)<br />

> 40 dB<br />

Crosstalk attenuation between<br />

inputs (UISO < 60 V)<br />

> 70 dB<br />

Operational limit (in total temperature range, referred to<br />

input range)<br />

25 mV<br />

0.09 %<br />

50 mV<br />

0.06 %<br />

80 mV<br />

0.05 %<br />

250mV/500mV/1V 0.04 %<br />

Basic error (operational limit at 25C, referred to input<br />

range)<br />

25 mV<br />

0.018 %<br />

50 mV<br />

0.014 %<br />

80 mV<br />

0.011 %<br />

250mV/500mV/1V 0.008 %<br />

Temperature error (referred to input range)<br />

25 mV<br />

0.0019 %/K<br />

50 mV<br />

0.0013 %/K<br />

80 mV<br />

0.0011 %/K<br />

250mV/500mV/1V 0.0010 %/K<br />

Linearity error<br />

(referred to input range)<br />

0.003 %<br />

Repeatability (in steady-state<br />

condition at 25C,<br />

referred to input range)<br />

3-60<br />

0.003 %<br />

Interference rejection, error limits continued<br />

The accuracy of temperature<br />

measurement with external<br />

compensation with thermal<br />

resistors is derived from:<br />

The accuracy of temperature<br />

measurement with external<br />

compensation with<br />

compensation box is derived<br />

from:<br />

The accuracy of temperature<br />

measurement with<br />

compensation of the external<br />

reference junction maintained<br />

at 0C / 50C is derived from:<br />

The accuracy of temperature<br />

measurement with internal<br />

compensation (terminal<br />

temperature) is derived from:<br />

– Error for analog<br />

input of the type of<br />

thermocouple used<br />

– Accuracy 1) of the<br />

type of thermal<br />

resistor used for<br />

compensation<br />

– Error 1) of<br />

compensation input<br />

– Error for analog<br />

input of the type of<br />

thermocouple used<br />

– Accuracy 1) of<br />

compensation box<br />

– Error 1) of<br />

compensation input<br />

– Error for analog<br />

input of the type of<br />

thermocouple used<br />

– Accuracy 1) of<br />

reference junction<br />

temperature<br />

– Error for analog<br />

input of the type of<br />

thermocouple used<br />

– Accuracy 1) of<br />

internal reference<br />

junction<br />

temperature 0.5 K<br />

1) Due to the constant increase in the thermocouple characteristic at higher temperatures, the error in the compensation<br />

element is less effective than at temperatures in the vicinity of the compensation temperature. Exception: Thermocouple<br />

types J and E (relative linear progression)<br />

Due to the little increase in the range from approx. 0C to 40C, the lack of compensation of the reference junction<br />

temperature has only a negligible effect in the case of thermocouple type B. If there is no compensation and the<br />

measurement mode ”Compensation to 0C ” is set, the deviation in thermocouple type B during temperature<br />

measurement is between 700C and 1820C < 0.5C<br />

500C and 700C < 0.7C.<br />

”Internal compensation” should be set if the reference junction temperature closely corresponds to the module<br />

temperature. As a result, the error for the temperature range from 700 to 1820C is reduced to < 0.5C.<br />

I/O Modules with Intrinsically-Safe Signals<br />

C79000-G7076-C152-04

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!