23.11.2014 Views

xxiii πανελληνιο συνεδριο φυσικης στερεας καταστασης & επιστημης ...

xxiii πανελληνιο συνεδριο φυσικης στερεας καταστασης & επιστημης ...

xxiii πανελληνιο συνεδριο φυσικης στερεας καταστασης & επιστημης ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14<br />

H = 5 T<br />

100<br />

12<br />

80<br />

M (emu/g)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

c<br />

a<br />

b<br />

0 50 100 150 200 250 300<br />

T (K)<br />

Figure 3. Temperature dependency of the magnetization of<br />

Co 2 SiO 4 along different crystallographic axes.<br />

ΔI/ΔI max<br />

60<br />

40<br />

20<br />

0<br />

(001)<br />

(003)<br />

(502)<br />

0 10 20 30 40 50 60<br />

T (K)<br />

Figure 4. Temperature dependency of several<br />

magnetic reflections of Co 2 SiO 4<br />

According to the neutron diffraction data the magnetic contributions into intensities of Bragg reflections almost disappear<br />

above sinΘ/λ ≈ 0.75 Å -1 . On the other hand side, the nuclear contributions are still strong above 0.75 Å -1 . Thus, we have<br />

precisely refined the crystal structure separately first in order to refine the magnetic structure at the ground state very<br />

accurately afterwards.<br />

Neutron diffraction data at 2 K suggest the magnetic cell is equal to the crystallographic cell (k=0); magnetic structure<br />

corresponds to the Shubnikov magnetic space group Pnma. Cobalt magnetic moments on M II are parallel to the b-axis<br />

whereas on M I they are canted below T N (see figure 5). The magnetic moments equal to about 3.9 and 3.3µ B /Co ion for Co 2+<br />

in M I and M II , respectively (table 1). These values significantly exceed the spin-only moment of 3µ B /Co 2+ ion in high-spin<br />

state (t 2g 5 e g 2 , S = 3/2). Most probably the orbital contribution is significant and different for the two Co species. However, an<br />

additional X-ray magnetic circular dichroism experiments are necessary to separate the spin and orbital contributions to the<br />

total magnetic moment.<br />

It is also worth to note that our calculated values of the magnetic moment of Co I are in a good agreement with ref. [5], but<br />

the M(Co II ) value is smaller. Furthermore, we have found that the thermal behaviors of several magnetic reflections differ<br />

(figure 4). This might be a hint to a different thermal evolution of the different Co-sublattices and should be studied more<br />

precisely. The preliminary results of our refinement of the crystal and magnetic structures of Co 2 SiO 4 at 2 K are reported in<br />

the table 1.<br />

Table 1. Results of refinement of crystal and magnetic<br />

structures for Co 2 SiO 4 in space group Pnma at 2 K.<br />

Unit cell parameters: a = 10.2897(50) Å, b =<br />

5.9886(30) Å, c = 4.7793(24) Å.<br />

Figure 5. A schematic representation of Co 2 SiO 4<br />

magnetic structure<br />

atom x y z U iso<br />

Co(1) 0 0 0 0.0012(2)<br />

Co(2) 0.27604(6) 0.25 0.99131(15) 0.0010(2)<br />

Si 0.09488(4) 0.25 0.42822(8) 0.0011(1)<br />

O1 0.09190(3) 0.25 0.76733(6) 0.0022(1)<br />

O2 0.44849(3) 0.25 0.21571(7) 0.0022(1)<br />

O3 0.16427(2) 0.03325(5) 0.28123(4) 0.0024(1)<br />

M X (µ B ) M Y (µ B ) M Z (µ B ) M (µ B )<br />

Co(1) 1.258(31) 3.587(22) 0.706(87) 3.866(30)<br />

Co(2) - 3.262(23) - 3.262(23)<br />

[1] Hahn T., International Tables for Crystallography. London: Kluwer (1995).<br />

[2] http://www.frm2.tum.de/heidi<br />

[3] Rodriguez-Carvajal J. L., Physica B 55 (1992) 192.<br />

[4] Ballet O., Fuess H. et al, J. Phys: Condens. Matter 1 (1989) 4955.<br />

[5] Lottermoser W. and Fuess H., Phys. Stat. Sol. A 109 (1988) 589.<br />

111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!